In many applications, coupling between thermal and mechanical domains can significantly influence structural dynamics. Analytical approaches to study such problems have previously used assumptions such as a proscribed temperature distribution or one-way coupling to enable assessments. In contrast, time-stepping numerical simulations have captured more detailed aspects of multiphysics interactions at the expense of high computational demands and lack of insight of the underlying physics. To provide a new tool that closes the knowledge gap and broadens potential for analytical techniques, this research formulates and analytically solves a thermomechanical beam model considering a combination of thermal and mechanical excitations that result in extreme nonlinear behaviors. Validated by experimental evidence, the analytical framework facilitates the prediction of the nonlinear dynamics of multi-degree-of-freedom structures exhibiting two-way thermomechanical coupling. The analysis enables the investigation of mechanical and thermomechanical impedance metrics as a means to forecast future nonlinear dynamic behaviors such as extreme bifurcations. For the first time, characteristics of mechanical impedance previously reported to predict the onset of dynamic bifurcations in discrete systems are translated to illuminate the nearness of distributed parameter structures to bifurcations. In addition, fundamental connections are discovered in the thermomechanical evaluations between nonlinear low amplitude dynamics of the postbuckled beam and the energetic snap-through vibration that are otherwise hidden by studying displacement amplitudes alone.

References

References
1.
Barnes
,
J. R.
,
Stephenson
,
R. J.
,
Welland
,
M. E.
,
Gerber
,
C.
, and
Gimzewski
,
J. K.
,
1994
, “
Photothermal Spectroscopy With Femtojoule Sensitivity Using a Micromechanical Device
,”
Nature
,
372
(
6501
), pp.
79
81
.
2.
Brinson
,
L. C.
,
1993
, “
One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable
,”
J. Intell. Mater. Syst. Struct.
,
4
(
2
), pp.
229
242
.
3.
Leyva
,
I. A.
,
2017
, “
The Relentless Pursuit of Hypersonic Flight
,”
Phys. Today
,
70
(
11
), pp.
31
36
.
4.
Galea
,
S. C. P.
, and
White
,
R. G.
,
1993
, “
The Effect of Temperature on the Natural Frequencies and Acoustically Induced Strains in CFRP Plates
,”
J. Sound Vib.
,
164
(
3
), pp.
399
424
.
5.
Thornton
,
E. A.
,
1993
, “
Thermal Buckling of Plates and Shells
,”
ASME Appl. Mech. Rev.
,
46
(
10
), pp.
485
506
.
6.
Noda
,
N.
,
1991
, “
Thermal Stresses in Materials With Temperature-Dependent Properties
,”
ASME Appl. Mech. Rev.
,
44
(
9
), pp.
383
397
.
7.
Lemlich
,
R.
,
1955
, “
Effect of Vibration on Natural Convective Heat Transfer
,”
Ind. Eng. Chem.
,
47
(
6
), pp.
1175
1180
.
8.
Lemlich
,
R.
, and
Rao
,
M. A.
,
1965
, “
The Effect of Transverse Vibration on Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
8
(
1
), pp.
27
33
.
9.
Culler
,
A. J.
, and
McNamara
,
J. J.
,
2011
, “
Impact of Fluid-Thermal-Structural Coupling on Response Prediction of Hypersonic Skin Panels
,”
AIAA J.
,
49
(
11
), pp.
2393
2406
.
10.
Culler
,
A. J.
, and
McNamara
,
J. J.
,
2010
, “
Studies on Fluid-Thermal-Structural Coupling for Aerothermoelasticity in Hypersonic Flow
,”
AIAA J.
,
48
(
8
), pp.
1721
1738
.
11.
Miller
,
B. A.
, and
McNamara
,
J. J.
,
2015
, “
Time-Marching Considerations for Response Prediction of Structures in Hypersonic Flows
,”
AIAA J.
,
53
(
10
), pp.
3028
3038
.
12.
Miller
,
B. A.
,
McNamara
,
J. J.
,
Spottswood
,
S. M.
, and
Culler
,
A. J.
,
2011
, “
The Impact of Flow Induced Loads on Snap-Through Behavior of Acoustically Excited, Thermally Buckled Panels
,”
J. Sound Vib.
,
330
(
23
), pp.
5736
5752
.
13.
Daneshjo
,
K.
, and
Ramezani
,
M.
,
2004
, “
Classical Coupled Thermoelasticity in Laminated Composite Plates Based on Third-Order Shear Deformation Theory
,”
Compos. Struct.
,
64
(
3–4
), pp.
369
375
.
14.
Carrera
,
E.
,
Boscolo
,
M.
, and
Robaldo
,
A.
,
2007
, “
Hierarchic Multilayered Plate Elements for Coupled Multifield Problems of Piezoelectric Adaptive Structures: Formulation and Numerical Assessment
,”
Arch. Comput. Methods Eng.
,
14
(
4
), pp.
383
430
.
15.
Matney
,
A.
,
Mignolet
,
M. P.
,
Culler
,
A. J.
,
McNamara
,
J. J.
, and
Spottswood
,
S. M.
,
2015
, “
Panel Response Prediction Through Reduced Order Models With Application to Hypersonic Aircraft
,”
AIAA
paper No. AIAA 2015-1630.
16.
Perez
,
R.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2011
, “
Nonlinear Reduced-Order Models for Thermoelastodynamic Response of Isotropic and Functionally Graded Panels
,”
AIAA J.
,
49
(
3
), pp.
630
641
.
17.
Settimi
,
V.
,
Saetta
,
E.
, and
Rega
,
G.
,
2017
, “
Local and Global Nonlinear Dynamics of Thermomechanically Coupled Composite Plates in Passive Thermal Regime
,”
Nonlinear Dyn.
(epub).
18.
Pal
,
M. C.
,
1970
, “
Large Amplitude Free Vibration of Circular Plates Subjected to Aerodynamic Heating
,”
Int. J. Solids Struct.
,
6
(
3
), pp.
301
313
.
19.
Lee
,
J.
,
1993
, “
Large-Amplitude Plate Vibration in an Elevated Thermal Environment
,”
ASME Appl. Mech. Rev.
,
46
(
11S
), pp.
S242
S254
.
20.
Chang
,
W. P.
, and
Wan
,
S. M.
,
1986
, “
Thermomechanically Coupled Non-Linear Vibration of Plates
,”
Int. J. Non-Linear Mech.
,
21
(
5
), pp.
375
389
.
21.
Chang
,
W. P.
, and
Jen
,
S.
,
1986
, “
Nonlinear Free Vibration of Heated Orthotropic Rectangular Plates
,”
Int. J. Solids Struct.
,
22
(
3
), pp.
267
281
.
22.
Shu
,
X.
,
Zhang
,
X.
, and
Zhang
,
J.
,
2000
, “
Thermoelastic Free Vibrations of Clamped Circular Plate
,”
Appl. Math. Mech.
,
21
(
6
), pp.
715
724
.
23.
Harne
,
R. L.
, and
Goodpaster
,
B. A.
,
2018
, “
Impedance Measures in Analysis and Characterization of Multistable Structures Subjected to Harmonic Excitation
,”
Mech. Syst. Signal Process.
,
98
, pp.
78
90
.
24.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Lineton
,
B.
,
2008
, “
On the Resonance Response of an Asymmetric Duffing Oscillator
,”
Int. J. Non-Linear Mech.
,
43
(
9
), pp.
858
867
.
25.
Amabili
,
M.
,
2006
, “
Theory and Experiments for Large-Amplitude Vibrations of Rectangular Plates With Geometric Imperfections
,”
J. Sound Vib.
,
291
(
3–5
), pp.
539
565
.
26.
Yamaki
,
N.
,
Otomo
,
K.
, and
Chiba
,
M.
,
1981
, “
Non-Linear Vibrations of a Clamped Circular Plate With Initial Deflection and Initial Edge Displacement—Part 1: Theory
,”
J. Sound Vib.
,
79
(
1
), pp.
23
42
.
27.
Yamaki
,
N.
,
Otomo
,
K.
, and
Chiba
,
M.
,
1981
, “
Non-Linear Vibrations of a Clamped Circular Plate With Initial Deflection and Initial Edge Displacement—Part II: Experiment
,”
J. Sound Vib.
,
79
(
1
), pp.
43
59
.
28.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
,
Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing
,
Wiley
,
Chichester, UK
.
29.
Hodges
,
D. H.
,
1984
, “
Proper Definition of Curvature in Nonlinear Beam Kinematics
,”
AIAA J.
,
22
(
12
), pp.
1825
1827
.
30.
Seif
,
M.
,
Main
,
J.
,
Weigand
,
J.
,
Sadek
,
F.
,
Choe
,
L.
,
Zhang
,
C.
,
Gross
,
J.
,
Luecke
,
W.
, and
McColskey
,
D.
,
2016
, “
Temperature-Dependent Material Modeling for Structural Steels: Formulation and Application
,” National Institute of Standards and Technology, Gaithersburg, MD, NIST Tech. Note No.
1907
.https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.1907.pdf
31.
Tauchert
,
T. R.
,
1991
, “
Thermally Induced Flexure, Buckling, and Vibration of Plates
,”
ASME Appl. Mech. Rev.
,
44
(
8
), pp.
347
360
.
32.
Nowacki
,
W.
,
1975
,
Dynamic Problems of Thermoelasticity
,
Noordhoff International Publishing
,
Leyden, The Netherlands
.
33.
Hetnarski
,
R. B.
, and
Eslami
,
M. R.
,
2009
,
Thermal Stresses—Advanced Theory and Applications
,
Springer Science+Business Media
, New York.
34.
Lorencini
,
E.
,
1970
, “
Heat Conduction With a Temperature-Dependent Thermal Conductivity Coefficient
,”
J. Eng. Phys.
,
19
, pp.
1548
1554
.https://link.springer.com/article/10.1007/BF00825355#citeas
35.
Beslin
,
O.
, and
Nicolas
,
J.
,
1997
, “
A Hierarchical Functions Set for Predicting Very High Order Plate Bending Modes With Any Boundary Conditions
,”
J. Sound Vib.
,
202
(
5
), pp.
633
655
.
37.
Goodpaster
,
B. A.
, and
Harne
,
R. L.
,
2018
, “
An Experimental Characterization of the Impedance and Spectral Content of Multistable Structural Responses During Dynamic Bifurcations
,”
ASME J. Vib. Acoust.
,
140
(5), p. 051009.
38.
Szemplińska-Stupnicka
,
W.
,
1988
, “
Bifurcations of Harmonic Solution Leading to Chaotic Motion in the Softening Type Duffing's Oscillator
,”
Int. J. Non-Linear Mech.
,
23
(
4
), pp.
257
277
.
39.
Strogatz
,
S. H.
,
1994
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.