Geomaterials such as vuggy carbonates are known to exhibit multiple spatial scales. A common manifestation of spatial scales is the presence of (at least) two different scales of pores with different hydromechanical properties. Moreover, these pore-networks are connected through fissures and conduits. Although some models are available in the literature to describe flows in such media, they lack a strong theoretical basis. This paper aims to fill this gap in knowledge by providing the theoretical foundation for the flow of incompressible single-phase fluids in rigid porous media that exhibit double porosity/permeability. We first obtain a mathematical model by combining the theory of interacting continua and the maximization of rate of dissipation (MRD) hypothesis, and thereby provide a firm thermodynamic underpinning. The governing equations of the model are a system of elliptic partial differential equations (PDEs) under a steady-state response and a system of parabolic PDEs under a transient response. We then present, along with mathematical proofs, several important mathematical properties that the solutions to the model satisfy. We also present several canonical problems with analytical solutions which are used to gain insights into the velocity and pressure profiles, and the mass transfer across the two pore-networks. In particular, we highlight how the solutions under the double porosity/permeability differ from the corresponding ones under Darcy equations.

References

References
1.
Al-Mukhtar
,
M.
,
1995
, “
Macroscopic Behavior and Microstructural Properties of a Kaolinite Clay Under Controlled Mechanical and Hydraulic State
,”
First International Conference on Unsaturated Soils/unsat'95
, Paris, France, Sept. 6–8, pp. 3–9.https://trid.trb.org/view/468401
2.
Delage
,
P.
,
Audiguier
,
M.
,
Cui
,
Y. J.
, and
Howat
,
M. D.
,
1996
, “
Microstructure of a Compacted Silt
,”
Can. Geotech. J.
,
33
(
1
), pp.
150
158
.
3.
Didwania
,
A. K.
,
2002
, “
Micromechanical Basis of Concept of Effective Stress
,”
J. Eng. Mech.
,
128
(
8
), pp.
864
868
.
4.
Koliji
,
A.
,
Laloui
,
L.
,
Cusinier
,
O.
, and
Vulliet
,
L.
,
2006
, “
Suction Induced Effects on the Fabric of a Structured Soil
,”
Transp. Porous Media
,
64
(
2
), pp.
261
278
.
5.
Borja
,
R. I.
, and
Koliji
,
A.
,
2009
, “
On the Effective Stress in Unsaturated Porous Continua With Double Porosity
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1182
1193
.
6.
Straughan
,
B.
,
2017
,
Mathematical Aspects of Multi-Porosity Continua
,
Springer
,
Cham, Switzerland
.
7.
Pruess
,
K.
, and
Narasimhan
,
T. N.
,
1985
, “
A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media
,”
Soc. Pet. Eng. J.
,
25
(
1
), pp.
14
26
.
8.
van Genuchten
,
M. T.
, and
Wierenga
,
P. J.
,
1976
, “
Mass Transfer Studies in Sorbing Porous Media—I: Analytical Solutions
,”
Soil Sci. Soc. Am. J.
,
40
(
4
), pp.
473
480
.
9.
Šimunek
,
J.
,
Jarvis
,
N. J.
,
van Genuchten
,
M. T.
, and
Gärdenäs
,
A.
,
2003
, “
Review and Comparison of Models for Describing Non-Equilibrium and Preferential Flow and Transport in the Vadose Zone
,”
J. Hydrol.
,
272
(
1–4
), pp.
14
35
.
10.
Geiger
,
S.
,
Dentz
,
M.
, and
Neuweiler
,
I.
,
2013
, “
A Novel Multi-Rate Dual-Porosity Model for Improved Simulation of Fractured and Multiporosity Reservoirs
,”
SPE J.
,
18
(
04
), pp.
670
684
.
11.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
Soc. Pet. Eng. J.
,
3
(
03
), pp.
245
255
.
12.
Hayes
,
J. B.
,
1979
, “
Sandstone Diagenesis—The Hole Truth
,” Aspects of Diagenesis, Vol. 26, Society of Economic
Paleontologists and Mineralogists
, Tulsa, OK, pp.
127
139
.
13.
Schmidt
,
V.
, and
Mcdonald
,
D. A.
,
1979
, “
Texture and Recognition of Secondary Porosity in Sandstones
,” Aspects of Diagenesis, Vol. 26, Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp.
209
225
.
14.
Cuisinier
,
O.
, and
Laloui
,
L.
,
2004
, “
Fabric Evolution During Hydromechanical Loading of a Compacted Silt
,”
Int. J. Numer. Anal. Methods Geomech.
,
28
(
6
), pp.
483
499
.
15.
Barenblatt
,
G. I.
,
Zheltov
,
I. P.
, and
Kochina
,
I. N.
,
1960
, “
Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks (Strata)
,”
J. Appl. Math. Mech.
,
24
(
5
), pp.
1286
1303
.
16.
Dykhuizen
,
R. C.
,
1990
, “
A New Coupling Term for Dual-Porosity Models
,”
Water Resour. Res.
,
26
(
2
), pp.
351
356
.
17.
Vogel
,
T.
,
Gerke
,
H. H.
,
Zhang
,
R.
, and
van Genuchten
,
M. T.
,
2000
, “
Modeling Flow and Transport in a Two-Dimensional Dual-Permeability System With Spatially Variable Hydraulic Properties
,”
J. Hydrol.
,
238
(
1–2
), pp.
78
89
.
18.
Balogun
,
A. S.
,
Kazemi
,
H.
,
Ozkan
,
E.
,
Al-Kobaisi
,
M.
, and
Ramirez
,
B. A.
,
2007
, “
Verification and Proper Use of Water-Oil Transfer Function for Dual-Porosity and Dual-Permeability Reservoirs
,”
SPE Middle East Oil and Gas Show and Conference
, Manama, Bahrain, Mar. 11–14, SPE Paper No.
SPE-104580-MS
.
19.
Lowell
,
S.
,
Shields
,
J. E.
,
Thomas
,
M. A.
, and
Thommes
,
M.
,
2012
,
Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density
,
Springer Science and Business Media
,
New York
.
20.
Stock
,
S. R.
,
2008
,
Microcomputed Tomography: Methodology and Applications
,
CRC Press
,
Boca Raton, FL
.
21.
Arbogast
,
T.
,
Douglas
,
J. J.
, and
Hornung
,
U.
,
1990
, “
Derivation of the Double Porosity Model of Single Phase Flow Via Homogenization Theory
,”
SIAM J. Math. Anal.
,
21
(
4
), pp.
823
836
.
22.
Amaziane
,
B.
, and
Pankratov
,
L.
,
2015
, “
Homogenization of a Model for Water–Gas Flow Through Double-Porosity Media
,”
Math. Methods Appl. Sci.
,
39
(
3
), pp.
425
451
.
23.
Boutin
,
C.
, and
Royer
,
P.
,
2015
, “
On Models of Double Porosity Poroelastic Media
,”
Geophys. J. Int.
,
203
(
3
), pp.
1694
1725
.
24.
Amaziane
,
B.
,
Antontsev
,
S.
,
Pankratov
,
L. A.
, and
Piatnitski
,
A.
,
2010
, “
Homogenization of Immiscible Compressible Two-Phase Flow in Porous Media: Application to Gas Migration in a Nuclear Waste Repository
,”
Multiscale Model. Simul.
,
8
(
5
), pp.
2023
2047
.
25.
Hornung
,
U.
,
1996
,
Homogenization and Porous Media
,
Springer-Verlag
,
New York
.
26.
Lubliner
,
J.
,
2008
,
Plasticity Theory
,
Dover Publications Inc.
,
Mineola, NY
.
27.
Borja
,
R. I.
,
2013
,
Plasticity: Modeling and Computation
,
Springer Science and Business Media
,
New York
.
28.
Evans
,
L. C.
,
1998
,
Partial Differential Equations
,
American Mathematical Society
,
Providence, RI
.
29.
Bowen
,
R.
,
2014
,
Porous Elasticity: Lectures on the Elasticity of Porous Materials as an Application of the Theory of Mixtures
,
Texas A&M University
,
College Station, TX
.
30.
Chen
,
Z. X.
,
1989
, “
Transient Flow of Slightly Compressible Fluids Through Double-Porosity, Double-Permeability Systems-a State-of-the-Art Review
,”
Transp. Porous Media
,
4
(
2
), pp.
147
184
.
31.
Haggerty
,
R.
, and
Gorelick
,
S. M.
,
1995
, “
Multiple-Rate Mass Transfer for Modeling Diffusion and Surface Reactions in Media With Pore-Scale Heterogeneity
,”
Water Resour. Res.
,
31
(
10
), pp.
2383
2400
.
32.
Bowen
,
R. M.
,
1976
, “
Theory of Mixtures
,”
Continuum Physics
,
A. C.
Eringen
, ed., Vol.
III
,
Academic Press
,
New York
.
33.
Pekař
,
M.
, and
Samohýl
,
I.
,
2014
,
The Thermodynamics of Linear Fluids and Fluid Mixtures
,
Springer
,
Cham, Switzerland
.
34.
de Boer
,
R.
,
2012
,
Theory of Porous Media: Highlights in Historical Development and Current State
,
Springer Science & Business Media
,
New York
.
35.
Atkin
,
R. J.
, and
Craine
,
R. E.
,
1976
, “
Continuum Theories of Mixtures: Basic Theory and Historical Development
,”
Q. J. Mech. Appl. Math.
,
29
(
2
), pp.
209
244
.
36.
Ziegler
,
H.
,
1983
,
An Introduction to Thermomechanics
,
North Holland Publishing Company
,
Amsterdam, The Netherlands
.
37.
Ziegler
,
H.
, and
Wehrli
,
C.
,
1987
, “
The Derivation of Constitutive Relations From the Free Energy and the Dissipation Function
,”
Adv. Appl. Mech.
,
25
, pp.
183
238
.
38.
Srinivasa
,
A. R.
, and
Srinivasan
,
S. M.
,
2009
,
Inelasticity of Materials: An Engineering Approach and a Practical Guide
, Vol.
80
,
World Scientific Publishing
,
Singapore
.
39.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2001
, “
Modeling Anisotropic Fluids Within the Framework of Bodies With Multiple Natural Configurations
,”
J. Non-Newtonian Fluid Mech.
,
99
(
2–3
), pp.
109
124
.
40.
Xu
,
C.
,
Mudunuru
,
M. K.
, and
Nakshatrala
,
K. B.
,
2016
, “
Material Degradation Due to Moisture and Temperature. part 1: Mathematical Model, Analysis, and Analytical Solutions
,”
Continuum Mech. Thermodyn.
,
28
(
6
), pp.
1847
1885
.
41.
Karra
,
S.
,
2013
, “
Modeling the Diffusion of a Fluid Through Viscoelastic Polyimides
,”
Mech. Mater.
,
66
, pp.
120
133
.
42.
Truesdell
,
C.
,
1991
,
A First Course in Rational Continuum Mechanics
, Vol.
I
,
Academic Press
,
New York
.
43.
Callen
,
H. B.
,
1985
,
Thermodynamics and an Introduction to Thermostatistics
,
Wiley
,
New York
.
44.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
45.
Brinkman
,
H. C.
,
1947
, “
On the Permeability of the Media Consisting of Closely Packed Porous Particles
,”
Appl. Sci. Res.
,
A1
(
1
), pp.
81
86
.
46.
Rajagopal
,
K. R.
,
2007
, “
On a Hierarchy of Approximate Models for Flows of Incompressible Fluids Through Porous Solids
,”
Math. Models Methods Appl. Sci.
,
17
(
02
), pp.
215
252
.
47.
Joodat
,
S. H. S.
,
Nakshatrala
,
K. B.
, and
Ballarini
,
R.
,
2018
, “
Modeling Flow in Porous Media With Double Porosity/Permeability: A Stabilized Mixed Formulation, Error Analysis, and Numerical Solutions
,”
Comput. Methods Appl. Mech. Eng.
,
337
(
1
), pp.
632
676
.
48.
Shabouei
,
M.
, and
Nakshatrala
,
K. B.
,
2016
, “
Mechanics-Based Solution Verification for Porous Media Models
,”
Commun. Comput. Phys.
,
20
(
05
), pp.
1127
1162
.
49.
Love
,
A. E. H.
,
1920
,
A Treatise on the Mathematical Theory of Elasticity
,
3rd ed.
,
Cambridge University Press
,
New York
.
50.
Sadd
,
M. H.
,
2009
,
Elasticity: Theory, Applications, and Numerics
,
Academic Press
,
Burlington, MA
.
51.
Gilbarg
,
D.
, and
Trudinger
,
N. S.
,
2001
,
Elliptic Partial Differential Equations of Second Order
,
Springer
,
New York
.
52.
Lighthill
,
M. J.
,
1958
,
An Introduction to Fourier Analysis and Generalised Functions
,
Cambridge University Press
,
Cambridge, UK
.
53.
Tricomi
,
F. G.
,
1957
,
Integral Equations
,
Interscience Publishers
,
New York
.
54.
Stackgold
,
I.
,
1998
,
Green's Functions and Boundary Value Problems. Wiley
,
Interscience
,
New York
.
55.
Atkinson
,
K. E.
,
1997
,
The Numerical Solution of Integral Equations of the Second Kind
,
Cambridge University Press
,
Cambridge, UK
.
56.
Polyanin
,
A. D.
, and
Manzhirov
,
A. V.
,
2008
,
Handbook of Integral Equations
,
2nd ed.
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
57.
Dickenson
,
T. C.
,
1997
,
Filters and Filtration Handbook
,
4th ed.
,
Elsevier
,
New York
.
58.
Bowman
,
F.
,
2010
,
Introduction to Bessel Functions
,
Dover Publications
,
Mineola, NY
.
You do not currently have access to this content.