This is a series of two papers in which the nonlinear stability behavior of sandwich panels is investigated. This part presents the buckling behavior and focuses on the critical load and the buckling mode. The buckling analysis is based on the extended high-order sandwich panel theory (EHSAPT) which takes transverse compressibility and axial rigidity of the core into account. It allows for the interaction between the faces and the core. The geometric nonlinearity, i.e., large displacement with moderate rotation, is considered in both faces and core. The weak form governing equations are derived based on the EHSAPT-based element. Detailed formulations and analysis procedures are provided. It presents a general approach for arbitrary buckling type without decoupling it into isolated global buckling and wrinkling. There are no additional assumptions made about the prebuckling state and buckling mode shape, which are commonly presumed in the literature. In addition, edge effects which are also commonly neglected are included. The prebuckling state is determined via a nonlinear static analysis. Solving an eigenvalue problem yields the critical load and the corresponding eigenvector gives the buckling mode. Sandwich panels with different lengths are studied as examples. Both global buckling and wrinkling are observed. It shows that the axial rigidity of the core has a pronounced effect on both the critical load and the buckling mode.

References

References
1.
Gdoutos
,
E. E.
,
Daniel
,
I. M.
, and
Wang
,
K. A.
,
2003
, “
Compression Facing Wrinkling of Composite Sandwich Structures
,”
Mech. Mater.
,
35
(
3–6
), pp.
511
522
.
2.
Linus
,
F.
,
2004
, “
Wrinkling and Compression Failure Transition in Sandwich Panels
,”
J. Sandwich Struct. Mater.
,
6
(
2
), pp.
129
144
.
3.
Leong
,
M.
,
Overgaard
,
L. C. T.
,
Thomsen
,
O. T.
,
Lund
,
E.
, and
Daniel
,
I. M.
,
2012
, “
Investigation of Failure Mechanisms in GFRP Sandwich Structures With Face Sheet Wrinkle Defects Used for Wind Turbine Blades
,”
Compos. Struct.
,
94
(
2
), pp.
768
778
.
4.
Allen
,
H. G.
,
1969
,
Analysis and Design of Structural Sandwich Panels
,
Pergamon
,
Oxford, UK
.
5.
Hoff
,
N. J.
, and
Mautner
,
S. F.
,
1945
, “
The Buckling of Sandwich-Type Panels
,”
J. Aeronaut. Sci.
,
12
(
3
), pp.
285
297
.
6.
Plantema
,
F. J.
,
1966
,
Sandwich Construction
,
Wiley
,
New York
.
7.
Carlsson
,
L.
, and
Kardomateas
,
G.
,
2011
,
Structural and Failure Mechanics of Sandwich Composites
,
Springer
,
New York
.
8.
Hunt
,
G. W.
,
1986
, “
Hidden (a)Symmetries of Elastic and Plastic Bifurcation
,”
ASME Appl. Mech. Rev.
,
39
(
8
), pp.
1165
1186
.
9.
Hunt
,
G. W.
,
Silva
,
L. S. D.
, and
Manzocchi
,
G. M. E.
,
1988
, “
Interactive Buckling in Sandwich Structures
,”
Proc. R. Soc. London. A.
,
417
(
1852
), pp.
155
177
.
10.
Hunt
,
G. W.
, and
Wadee
,
M. A.
,
1998
, “
Localization and Mode Interaction in Sandwich Structures
,”
Proc. R. Soc. London. Ser. A
,
454
(
1972
), pp.
1197
1216
.
11.
Wadee
,
M. A.
, and
Hunt
,
G. W.
,
1998
, “
Interactively Induced Localized Buckling in Sandwich Structures With Core Orthotropy
,”
ASME J. Appl. Mech.
,
65
(
2
), pp.
523
528
.
12.
Wadee
,
M. A.
,
Yiatros
,
S.
, and
Theofanous
,
M.
,
2010
, “
Comparative Studies of Localized Buckling in Sandwich Struts With Different Core Bending Models
,”
Int. J. Non-Linear Mech.
,
45
(
2
), pp.
111
120
.
13.
Lèotoing
,
L.
,
Drapier
,
S.
, and
Vautrin
,
A.
,
2002
, “
First Applications of a Novel Unified Model for Global and Local Buckling of Sandwich Columns
,”
Eur. J. Mech.—A/Solids
,
21
(
4
), pp.
683
701
.
14.
Douville
,
M.-A.
, and
Le Grognec
,
P.
,
2013
, “
Exact Analytical Solutions for the Local and Global Buckling of Sandwich Beam-Columns Under Various Loadings
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2597
2609
.
15.
Kardomateas
,
G. A.
,
2004
, “
Wrinkling of Wide Sandwich Panelsmbeams With Orthotropic Phases by an Elasticity Approach
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
818
825
.
16.
Kardomateas
,
G. A.
,
2010
, “
An Elasticity Solution for the Global Buckling of Sandwich Beams/Wide Panels With Orthotropic Phases
,”
ASME J. Appl. Mech.
,
77
(
2
), p.
021015
.
17.
Birman
,
V.
, and
Bert
,
C. W.
,
2004
, “
Wrinkling of Composite-Facing Sandwich Panels Under Biaxial Loading
,”
J. Sandwich Struct. Mater.
,
6
(
3
), pp.
217
237
.
18.
D'Ottavio
,
M.
, and
Polit
,
O.
,
2015
, “
Linearized Global and Local Buckling Analysis of Sandwich Struts With a Refined Quasi-3D Model
,”
Acta Mech.
,
226
(
1
), pp.
81
101
.
19.
Birman
,
V.
, and
Vo
,
N.
,
2016
, “
Wrinkling in Sandwich Structures With a Functionally Graded Core
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021002
.
20.
Birman
,
V.
, and
Costa
,
H.
,
2017
, “
Wrinkling of Functionally Graded Sandwich Structures Subject to Biaxial and In-Plane Shear Loads
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121006
.
21.
Frostig
,
Y.
,
Baruch
,
M.
,
Vilnay
,
O.
, and
Sheinman
,
I.
,
1992
, “
High-Order Theory for Sandwich-Beam Behavior With Transversely Flexible Core
,”
J. Eng. Mech.
,
118
(
5
), pp.
1026
1043
.
22.
Phan
,
C. N.
,
Frostig
,
Y.
, and
Kardomateas
,
G. A.
,
2012
, “
Analysis of Sandwich Beams With a Compliant Core and With in-Plane Rigidity extended High-Order Sandwich Panel Theory versus Elasticity
,”
ASME J. Appl. Mech.
,
79
(
4
), p.
041001
.
23.
Pandit
,
M. K.
,
Singh
,
B. N.
, and
Sheikh
,
A. H.
,
2008
, “
Buckling of Laminated Sandwich Plates With Soft Core Based on an Improved Higher Order Zigzag Theory
,”
Thin-Walled Struct.
,
46
(
11
), pp.
1183
1191
.
24.
Frostig
,
Y.
, and
Baruch
,
M.
,
1993
, “
High-Order Buckling Analysis of Sandwich Beams With Transversely Flexible Core
,”
J. Eng. Mech.
,
119
(
3
), pp.
476
495
.
25.
Sokolinsky
,
V.
, and
Frostig
,
Y.
,
1999
, “
Nonlinear Behavior of Sandwich Panels With a Transversely Flexible Core
,”
AIAA J.
,
37
(
11
), pp.
1474
1482
.
26.
Sokolinsky
,
V.
, and
Frostig
,
Y.
,
1999
, “
Boundary Condition Effects in Buckling of Soft Core Sandwich Panels
,”
J. Eng. Mech.
,
125
(
8
), pp.
865
874
.
27.
Sokolinsky
,
V.
, and
Frostig
,
Y.
,
2000
, “
Branching Behavior in the Nonlinear Response of Sandwich Panels With a Transversely Flexible Core
,”
Int. J. Solids Struct.
,
37
(
40
), pp.
5745
5772
.
28.
Phan
,
C. N.
,
Kardomateas
,
G. A.
, and
Frostig
,
Y.
,
2012
, “
Global Buckling of Sandwich Beams Based on the Extended High-Order Theory
,”
AIAA J.
,
50
(
8
), pp.
1707
1716
.
29.
Phan
,
C. N.
,
Bailey
,
N. W.
,
Kardomateas
,
G. A.
, and
Battley
,
M. A.
,
2012
, “
Wrinkling of Sandwich Wide Panels/Beams Based on the Extended High-Order Sandwich Panel Theory: Formulation, Comparison With Elasticity and Experiments
,”
Arch. Appl. Mech.
,
82
(
10–11
), pp.
1585
1599
.
30.
Yuan
,
Z.
,
Kardomateas
,
G. A.
, and
Frostig
,
Y.
,
2016
, “
Geometric Nonlinearity Effects in the Response of Sandwich Wide Panels
,”
ASME J. Appl. Mech.
,
83
(
9
), p.
091008
.
31.
Yuan
,
Z.
, and
Kardomateas
,
G. A.
,
2017
, “
Nonlinear Dynamic Response of Sandwich Wide Panels
,”
Int. J. Solids Struct.
(in press).
32.
Yuan
,
Z.
,
Kardomateas
,
G. A.
, and
Frostig
,
Y.
,
2015
, “
Finite Element Formulation Based on the Extended High-Order Sandwich Panel Theory
,”
AIAA J.
,
53
(
10
), pp.
3006
3015
.
33.
Crisfield
,
M. A.
,
1997
,
Non-Linear Finite Element Analysis of Solids and Structures, Volume 2: Advanced Topics
,
Wiley
, Chichester, UK.
You do not currently have access to this content.