A major challenge in designing a perfect invisibility cloak for elastic waves is that the mass density and elasticity tensor need to be independent functions of its radius with a linear transformation medium. The traditional cloak for out-of-plane shear waves in elastic membranes exhibits material properties with inhomogeneous and anisotropic shear moduli and densities, which yields a poor or even negative cloaking efficiency. This paper presents the design of a cylindrical cloak for elastic shear waves based on a nonlinear transformation. This excellent broadband nonlinear cloak only requires variation of its shear modulus, while the density in the cloak region remains unchanged. A nonlinear ray trajectory equation for out-of-plane shear waves is derived and a parameter to adjust the efficiency of the cylindrical cloak is introduced. Qualities of the nonlinear invisibility cloak are discussed by comparison with those of a cloak with the linear transformation. Numerical examples show that the nonlinear cloak is more effective for shielding out-of-plane elastic shear waves from outside the cloak than the linear cloak and illustrate that the nonlinear cloak for shear waves remains highly efficient in a broad frequency range. The proposed nonlinear transformation in conjunction with the ray trajectory equation can also be used to design nonlinear cloaks for other elastic waves.

References

References
1.
Pendry
,
J. B.
,
Schurig
,
D.
, and
Smith
,
D. R.
,
2006
, “
Controlling Electromagnetic Fields
,”
Science
,
312
(
5781
), pp.
1780
1782
.
2.
Leonhardt
,
U.
,
2006
, “
Optical Conformal Mapping
,”
Science
,
312
(
5781
), pp.
1777
1780
.
3.
Greenleaf
,
A.
,
Lassas
,
M.
, and
Uhlmann
,
G.
,
2003
, “
On Nonuniqueness for Calderon's Inverse Problem
,”
Math. Res. Lett.
,
10
(
5
), pp.
685
694
.
4.
Schurig
,
D.
,
Mock
,
J. J.
,
Justice
,
B. J.
,
Cummer
,
S. A.
,
Pendry
,
J. B.
,
Star
,
A. F.
, and
Smith
,
D. R.
,
2006
, “
Metamaterial Electromagnetic Cloak at Microwave Frequencies
,”
Science
,
314
(
5801
), pp.
977
980
.
5.
Guenneau
,
S.
,
McPhedran
,
R. C.
,
Enoch
,
S.
,
Movchan
,
A. B.
,
Farhat
,
M.
, and
Nicorovici
,
N.-A. P.
,
2011
, “
The Colours of Cloaks
,”
J. Opt.
,
13
(
2
), p.
024014
.
6.
Cummer
,
S. A.
, and
Schurig
,
D.
,
2007
, “
One Path to Acoustic Cloaking
,”
New J. Phys.
,
9
(
3
), p.
45
.
7.
Norris
,
A. N.
,
2008
, “
Acoustic Cloaking Theory
,”
Proc. R. Soc. A
,
464
(
2097
), pp.
2411
2434
.
8.
Chen
,
H. Y.
, and
Chan
,
C. T.
,
2010
, “
Acoustic Cloaking and Transformation Acoustics
,”
J. Phys. D
,
43
(
11
), p.
113001
.
9.
Dutrion
,
C.
, and
Simon
,
F.
,
2017
, “
Acoustic Scattering Reduction Using Layers of Elastic Materials
,”
J. Sound Vib.
,
388
, pp.
53
68
.
10.
Schittny
,
R.
,
Kadic
,
M.
,
Guenneau
,
S.
, and
Wegener
,
M.
,
2013
, “
Experiments on Transformation Thermodynamics: Molding the Flow of Heat
,”
Phys. Rev. Lett.
,
110
(
19
), p.
195901
.
11.
Stedman
,
T.
, and
Woods
,
L. M.
,
2017
, “
Cloaking of Thermoelectric Transport
,”
Sci. Rep.
,
7
(
1
), p.
6988
.
12.
Milton
,
G. M.
,
Briane
,
M.
, and
Willis
,
J. R.
,
2006
, “
On Cloaking for Elasticity and Physical Equations With a Transformation Invariant Form
,”
New J. Phys.
,
8
(
10
), pp.
248
267
.
13.
Milton
,
G. M.
, and
Willis
,
J. R.
,
2007
, “
On Modifications of Newton's Second Law and Linear Continuum Elastodynamics
,”
Proc. R. Soc. A
,
463
(
2079
), pp.
855
880
.
14.
Brun
,
M.
,
Guenneau
,
S.
, and
Movchan
,
A. B.
,
2009
, “
Achieving Control of in-Plane Elastic Waves
,”
Appl. Phys. Lett.
,
94
(
6
), p.
061903
.
15.
Diatta
,
A.
, and
Guenneau
,
S.
,
2014
, “
Controlling Solid Elastic Waves With Spherical Cloaks
,”
Appl. Phys. Lett.
,
105
(
2
), p.
021901
.
16.
Colquitt
,
D. J.
,
Brun
,
M.
,
Gei
,
M.
,
Movchan
,
A. B.
,
Movchan
,
N. V.
, and
Jones
,
I. S.
,
2014
, “
Transformation Elastodynamics and Cloaking for Flexural Waves
,”
J. Mech. Phys. Solids
,
72
, pp.
131
143
.
17.
Brun
,
M.
,
Colquitt
,
D. J.
,
Jones
,
I. S.
,
Movchan
,
A. B.
, and
Movchan
,
N. V.
,
2014
, “
Transformation Cloaking and Radial Approximations for Flexural Waves in Elastic Plates
,”
New J. Phys.
,
16
(
9
), p.
093020
.
18.
Jones
,
I. S.
,
Brun
,
M.
,
Movchan
,
N. V.
, and
Movchan
,
A. B.
,
2015
, “
Singular Perturbations and Cloaking Illusions for Elastic Waves in Membranes and Kirchhoff Plates
,”
Int. J. Solids Struct.
,
69–70
, pp.
498
506
.
19.
Chang
,
Z.
,
Hu
,
J.
,
Hu
,
G. K.
,
Tao
,
R.
, and
Wang
,
Y.
,
2011
, “
Controlling Elastic Waves With Isotropic Materials
,”
Appl. Phys. Lett.
,
98
(
12
), p.
121904
.
20.
Colombi
,
A.
,
Roux
,
P.
,
Guenneau
,
S.
, and
Rupin
,
M.
,
2015
, “
Directional Cloaking of Flexural Waves in a Plate With a Locally Resonant Metamaterial
,”
J. Acoust. Soc. Am
,
137
(
4
), pp.
1783
1789
.
21.
Wu
,
L. Z.
, and
Gao
,
P. L.
,
2015
, “
Manipulation of the Propagation of Out-of-Plane Shear Waves
,”
Int. J. Solids Struct.
,
69–70
, pp.
383
391
.
22.
Parnell
,
W. J.
,
2012
, “
Nonlinear Pre-Stress for Cloaking From Antiplane Elastic Waves
,”
Proc. R. Soc. A
,
468
(
2138
), pp.
563
580
.
23.
Futhazar
,
G.
,
Parnell
,
W. J.
, and
Norris
,
A. N.
,
2015
, “
Active Cloaking of Flexural Waves in Thin Plates
,”
J. Sound Vib.
,
356
, pp.
1
19
.
24.
Climente
,
A.
,
Torrent
,
D.
, and
Sanchez-Dehesa
,
J.
,
2016
, “
Analysis of Flexural Wave Cloaks
,”
AIP Adv.
,
6
(
12
), p.
121704
.
25.
Norris
,
A. N.
, and
Vemula
,
C.
,
1995
, “
Scattering of Flexural Waves on Thin Plates
,”
J. Sound Vib.
,
181
(
1
), pp.
115
125
.
26.
Stenger
,
N.
,
Wilhelm
,
M.
, and
Wegener
,
M.
,
2012
, “
Experiments on Elastic Cloaking in Thin Plates
,”
Phys. Rev. Lett.
,
108
(
1
), p.
014301
.
27.
Zareei
,
A.
, and
Alam
,
M. R.
,
2015
, “
Cloaking in Shallow-Water Waves Via Nonlinear Medium Transformation
,”
J. Fluid Mech.
,
778
, pp.
273
287
.
28.
Zareei
,
A.
, and
Alam
,
M. R.
,
2017
, “
Broadband Cloaking of Flexural Waves
,”
Phys. Rev. E
,
95
(
6
), p.
063002
.
29.
Hastings
,
F. D.
,
Schneider
,
J. B.
, and
Broschat
,
S. L.
,
1996
, “
Application of the Perfectly Matched Layer (PML) Absorbing Boundary Condition to Elastic Wave Propagation
,”
J. Acoust. Soc. Am.
,
100
(
5
), pp.
3061
3069
.
30.
Adler
,
R.
,
Bazin
,
M.
, and
Schiffer
,
M.
,
1975
,
Introduction to General Relativity
,
McGraw-Hill
,
New York
.
31.
Crudo
,
R. A.
, and
O'Brien
,
J. G.
,
2009
, “
Metric Approach to Transformation Optics
,”
Phys. Rev. A
,
80
(
3
), p.
033824
.
32.
Colquitt
,
D. J.
,
Jones
,
I. S.
,
Movchan
,
N. V.
,
Movchan
,
A. B.
,
Brun
,
M.
, and
McPhedran
,
R. C.
,
2013
, “
Making Waves Round a Structured Cloak: Lattices, Negative Refraction and Fringes
,”
Proc. R. Soc. A
,
469
(
2157
), pp.
8563
580
.
You do not currently have access to this content.