Understanding the buckling and post-buckling behavior of rods confined in a finite space is of both scientific and engineering significance. Under uniaxial compression, an initially straight and slender rod confined in a tube may buckle into a sinusoidal shape and subsequently evolve into a complicated, three-dimensional (3D) helical shape. In this paper, we combine theoretical and numerical methods to investigate the post-buckling behavior of confined rods. Two theoretical models, which are based on the inextensible and extensible rod theories, respectively, are proposed to derive the analytical expressions for the axial compressive stiffness in the sinusoidal post-buckling stage. The former is concise in formulation and can be easily applied in engineering, while the latter works well in a broader scope of post-buckling analysis. Both methods can give a good approximation to the sinusoidal post-buckling stiffness and the former model is proved to be a zeroth-order approximation of the latter. The flexible multibody dynamics method based on the Timoshenko's geometrically exact beam theory is used to examine the accuracy of the two models. The methods presented in this work can be used in, for example, drilling engineering in oil and gas industries.

References

References
1.
Su
,
Y.
,
Wu
,
J.
,
Fan
,
Z.
,
Hwang
,
K. C.
,
Song
,
J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Postbuckling Analysis and Its Application to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
487
508
.
2.
Xu
,
F.
,
Lu
,
W.
, and
Zhu
,
Y.
,
2010
, “
Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics
,”
ACS Nano
,
5
(
1
), pp.
672
678
.
3.
Ryu
,
S. Y.
,
Xiao
,
J. L.
,
Park
,
W. I.
,
Son
,
K. S.
,
Huang
,
Y. G.
,
Paik
,
U.
, and
Rogers
,
J. A.
,
2009
, “
Lateral Buckling Mechanics in Silicon Nanowires on Elastomeric Substrates
,”
Nano Lett.
,
9
(
9
), pp.
3214
3219
.
4.
Schneider
,
P. A.
,
2009
,
Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery
,
Informa Healthcare
,
New York
.
5.
Lubinski
,
A.
,
1950
, “
A Study of the Buckling of Rotary Drilling Strings
,”
Drilling and Production Practice
,
American Petroleum Institute
, New York, pp.
178
300
.
6.
Mitchell
,
R. F.
,
2002
, “
New Buckling Solutions for Extended Reach Wells
,”
IADC/SPE Drilling Conference
, Dallas, TX, Feb. 26–28,
SPE
Paper No. SPE-74566-MS.https://doi.org/10.2118/74566-MS
7.
Kuru
,
E.
,
Martinez
,
A.
,
Miska
,
S.
, and
Qiu
,
W.
,
2000
, “
The Buckling Behavior of Pipes and Its Influence on the Axial Force Transfer in Directional Wells
,”
ASME J. Energy Resour. Technol.
,
122
(
3
), pp.
129
135
.
8.
Miller
,
J. T.
,
Su
,
T.
,
Dussan V
,
E. B.
,
Pabon
,
J.
,
Wicks
,
N.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2015
, “
Buckling-Induced Lock-Up of a Slender Rod Injected Into a Horizontal Cylinder
,”
Int. J. Solids Struct.
,
72
, pp.
153
164
.
9.
McCourt
,
I.
, and
Kubie
,
J.
,
2005
, “
Limits on the Penetration of Coiled Tubing in Horizontal Oil Wells: Effect of the Pipe Geometry
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
11
), pp.
1191
1197
.
10.
Reis
,
P. M.
,
2015
, “
A Perspective on the Revival of Structural (In)Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia
,”
ASME J. Appl. Mech.
,
82
(
11
), p.
111001
.
11.
Freund
,
L. B.
,
2015
, “
Forced Motion of an Elastic Filament Through a Narrow Tube
,”
Acta Mech. Sin.
,
31
(
6
), pp.
789
790
.
12.
Cunha
,
J. C.
,
2004
, “
Buckling of Tubulars Inside Wellbores: A Review on Recent Theoretical and Experimental Works
,”
SPE Drill. Completion
,
19
(
1
), pp.
13
19
.https://doi.org/10.2118/87895-PA
13.
Gao
,
D. L.
, and
Huang
,
W. J.
,
2015
, “
A Review of Down-Hole Tubular String Buckling in Well Engineering
,”
Pet. Sci.
,
12
(
3
), pp.
443
457
.
14.
Mitchell
,
R. F.
,
2008
, “
Tubing Buckling—The State of the Art
,”
SPE Drilling Completion
,
23
(
4
), pp.
361
370
.
15.
Wicks
,
N.
,
Wardle
,
B. L.
, and
Pafitis
,
D.
,
2008
, “
Horizontal Cylinder-in-Cylinder Buckling Under Compression and Torsion: Review and Application to Composite Drill Pipe
,”
Int. J. Mech. Sci.
,
50
(
3
), pp.
538
549
.
16.
Feng
,
X. Q.
,
Cao
,
Y. P.
, and
Bo
,
L.
,
2017
,
Surface Wrinkling Mechanics of Soft Materials
,
China Science Press
,
Beijing, China
.
17.
Salies
,
J. B.
,
Azar
,
J. J.
, and
Sorem
,
J. R.
,
1994
, “
Experimental and Mathematical Modeling of Helical Buckling of Tubulars in Directional Wellbores
,”
International Petroleum Conference and Exhibition of Mexico
, Veracruz, Mexico, Oct. 10–13,
SPE
Paper No. SPE-28713-MS.https://doi.org/10.2118/28713-MS
18.
Arslan
,
M.
,
Ozbayoglu
,
E. M.
,
Miska
,
S.
,
Yu
,
M.
,
Takach
,
N.
, and
Mitchell
,
R. F.
,
2014
, “
Buckling of Buoyancy-Assisted Tubulars
,”
SPE Drill. Completion
,
29
(
4
), pp.
372
385
.
19.
Dawson
,
R.
,
1984
, “
Drill Pipe Buckling in Inclined Holes
,”
J. Pet. Technol.
,
36
(
10
), pp.
1734
1738
.
20.
Chen
,
Y.
,
Lin
,
Y.
, and
Cheatham
,
J. B.
,
1990
, “
Tubing and Casing Buckling in Horizontal Wells
,”
J. Pet. Technol.
,
42
(
2
), pp.
140
191
.
21.
Wu
,
J.
, and
Juvkam-Wold
,
H.
,
1993
, “
Study of Helical Buckling of Pipes in Horizontal Wells
,”
SPE Production Operations Symposium
, Oklahoma City, OK, Mar. 21–23,
SPE
Paper No. SPE-25503-MS.https://doi.org/10.2118/25503-MS
22.
Miska
,
S.
, and
Cunha
,
J. C.
,
1995
, “
An Analysis of Helical Buckling of Tubulars Subjected to Axial and Torsional Loading in Inclined Wellbores
,” SPE Production Operations Symposium
, Oklahoma City, OK, Apr. 2–4,
SPE
Paper No. SPE-29460-MS.https://doi.org/10.2118/29460-MS
23.
Gao
,
D. L.
,
Liu
,
F. W.
, and
Xu
,
B. Y.
,
1998
, “
An Analysis of Helical Buckling of Long Tubulars in Horizontal Wells
,” SPE International Oil and Gas Conference and Exhibition in China
, Beijing, China, Nov. 2–6,
SPE
Paper No. SPE-50931-MS.https://doi.org/10.2118/50931-MS
24.
Cunha
,
J. C.
,
1995
, “Buckling Behavior of Tubulars in Oil and Gas Wells: A Theoretical and Experimental Study With Emphasis on the Torque Effect,” Ph.D. thesis, University of Tulsa, Tulsa, OK.
25.
McCann
,
R. C.
, and
Suryanarayana
,
P. V. R.
,
1994
, “
Experimental Study of Curvature and Frictional Effects on Buckling
,”
Offshore Technology Conference
, Houston, TX, May 2–5,
SPE
Paper No. OTC-7568-MS.https://doi.org/10.4043/7568-MS
26.
Salies
,
J. B.
,
1994
, “Experimental Study and Mathematical Modeling of Helical Buckling of Tubulars in Inclined Wellbores,” Ph.D. thesis, University of Tulsa, Tulsa, OK.
27.
Miller
,
J. T.
,
2014
, “Mechanical Behavior of Elastic Rods Under Constraint,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/88280
28.
Miller
,
J. T.
,
Su
,
T.
,
Pabon
,
J.
,
Wicks
,
N.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2015
, “
Buckling of a Thin Elastic Rod Inside a Horizontal Cylindrical Constraint
,”
Extreme Mech. Lett.
,
3
, pp.
36
44
.
29.
Hajianmaleki
,
M.
, and
Daily
,
J. S.
,
2014
, “
Critical-Buckling-Load Assessment of Drillstrings in Different Wellbores by Use of the Explicit Finite-Element Method
,”
SPE Drill. Completion
,
29
(
2
), pp.
256
264
.
30.
Gao
,
G. H.
, and
Miska
,
S.
,
2009
, “
Effects of Boundary Conditions and Friction on Static Buckling of Pipe in a Horizontal Well
,”
SPE J.
,
14
(
4
), pp.
782
796
.
31.
Gao
,
G. H.
, and
Miska
,
S.
,
2010
, “
Effects of Friction on Post-Buckling Behavior and Axial Load Transfer in a Horizontal Well
,”
SPE J.
,
15
(
4
), pp.
1110
1124
.
32.
Huang
,
W. J.
, and
Gao
,
D. L.
,
2014
, “
Sinusoidal Buckling of a Thin Rod With Connectors Constrained in a Cylinder
,”
J. Nat. Gas Sci. Eng.
,
18
, pp.
237
246
.
33.
Mitchell
,
R. F.
,
1999
, “
A Buckling Criterion for Constant-Curvature Wellbores
,”
SPE J.
,
4
(
4
), pp.
349
352
.
34.
Huang
,
W. J.
,
Gao
,
D. L.
,
Wei
,
S. L.
, and
Chen
,
P. J.
,
2015
, “
Boundary Conditions: A Key Factor in Tubular-String Buckling
,”
SPE J.
,
20
(
6
), pp.
1409
1420
.https://doi.org/10.2118/174087-PA
35.
Liu
,
F. W.
,
1999
, “Post-Buckling Behaviors of Tubulars Within Circular Cylinders,”
Ph.D. thesis
, Tsinghua University, Beijing, China.https://globethesis.com/?t=1100360185453290
36.
Liu
,
J. P.
,
Zhong
,
X. Y.
,
Cheng
,
Z. B.
,
Feng
,
X. Q.
, and
Ren
,
G. X.
,
2018
, “
Buckling of a Slender Rod Confined in a Circular Tube: Theory, Simulation, and Experiment
,”
Int. J. Mech. Sci.
,
140
, pp. 288–305.https://doi.org/10.1016/j.ijmecsci.2018.03.008
37.
Paslay
,
P.
, and
Bogy
,
D.
,
1964
, “
The Stability of a Circular Rod Laterally Constrained to be in Contact With an Inclined Circular Cylinder
,”
ASME J. Appl. Mech.
,
31
(
4
), pp.
605
610
.
38.
Euler
,
L.
, and
Carathéodory
,
C.
,
1952
,
Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti
, Vol.
1
,
Springer Science & Business Media
, Berlin.
39.
Blundell
,
M.
, and
Harty
,
D.
,
2004
,
The Multibody Systems Approach to Vehicle Dynamics
,
Elsevier
, Amsterdam, The Netherlands.
40.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
, and
Sugiyama
,
H.
,
2007
,
Railroad Vehicle Dynamics: A Computational Approach
,
CRC Press
, Boca Raton, FL.
41.
Jain
,
A.
,
2010
,
Robot and Multibody Dynamics: Analysis and Algorithms
,
Springer
, Berlin.
42.
Rahnejat
,
H.
,
1998
,
Multi-Body Dynamics: Vehicles, Machines, and Mechanisms
,
Wiley
, Hoboken, NJ.
43.
Peng
,
Y.
,
Zhao
,
Z. H.
,
Zhou
,
M.
,
He
,
J. W.
,
Yang
,
J. G.
, and
Xiao
,
Y.
,
2017
, “
Flexible Multibody Model and the Dynamics of the Deployment of Mesh Antennas
,”
J. Guid. Control Dyn.
,
40
(
6
), pp.
1
8
.https://doi.org/10.2514/1.G000361
44.
Yang
,
C. J.
, and
Ren
,
G. X.
,
2014
, “
Dynamic Simulation of Multifold Deployable Rings
,”
AIAA J.
,
52
(
7
), pp.
1555
1559
.
45.
Petit
,
Y.
,
Aubin
,
C.-É.
, and
Labelle
,
H.
,
2004
, “
Patient-Specific Mechanical Properties of a Flexible Multi-Body Model of the Scoliotic Spine
,”
Med. Biol. Eng. Comput.
,
42
(
1
), pp.
55
60
.
46.
Bei
,
Y. H.
, and
Fregly
,
B. J.
,
2004
, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,”
Med. Eng. Phys.
,
26
(
9
), pp.
777
789
.
47.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
48.
Eberhard
,
P.
, and
Schiehlen
,
W.
,
2006
, “
Computational Dynamics of Multibody Systems: History, Formalisms, and Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
3
12
.
49.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
ASME Appl. Mech. Rev.
,
56
(
6
), pp.
553
613
.
50.
Cardona
,
A.
, and
Geradin
,
M.
,
1988
, “
A Beam Finite Element Non-Linear Theory With Finite Rotations
,”
Int. J. Numer. Methods Eng.
,
26
(
11
), pp.
2403
2438
.
51.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
52.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1988
, “
On the Dynamics in Space of Rods Undergoing Large Motions a Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
2
), pp.
125
161
.
53.
Bathe
,
K. J.
, and
Bolourchi
,
S.
,
1979
, “
Large Displacement Analysis of Three-Dimensional Beam Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
7
), pp.
961
986
.
54.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
55.
Hairer
,
E.
, and
Wanner
,
G.
,
1996
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer
,
Berlin
.
56.
Hairer
,
E.
,
Nrsett
,
S. P.
, and
Wanner
,
G.
,
1993
,
Solving Ordinary Differential Equations I: Nonstiff Problems
,
Springer
,
Berlin
.
57.
Mitchell
,
R. F.
,
1996
, “
Buckling Analysis in Deviated Wells: A Practical Method
,”
SPE Drill. Completion
,
14
(
1
), pp.
11
20
.https://doi.org/10.2118/55039-PA
You do not currently have access to this content.