A series of stress-controlled uniaxial cyclic tension-unloading tests are discussed to investigate the ratchetting of a filled rubber at room temperature. It is shown that obvious ratchetting occurs and depends apparently on the applied stress level, stress rate, and stress history. Based on the experimental observations, a damage-coupled hyper-viscoelastic-plastic constitutive model is then developed to describe the ratchetting of the filled rubber, which consists of three branches in parallel, i.e., a hyperelastic, a viscoelastic, and a plastic one. The damage is assumed to act equally on three branches and consists of two parts, i.e., the Mullins-type damage caused by the initial tensile deformation and the accumulated damage occurred during the cyclic deformation. The developed model is validated by comparing the predicted results with the experimental data.

References

References
1.
Ward
,
I. M.
, and
Sweeney
,
J.
,
2013
,
Mechanical Properties of Solid Polymers
,
Wiley
,
New York
.
2.
Hencky
,
H.
,
1933
, “
The Elastic Behavior of Vulcanized Rubber
,”
Rubber Chem. Technol.
,
6
(
2
), pp.
217
224
.
3.
Treloar
,
L.
,
1944
, “
Stress-Strain Data for Vulcanised Rubber Under Various Types of Deformation
,”
Trans. Faraday Soc.
,
40
, pp.
59
70
.
4.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
5.
Lion
,
A.
,
1996
, “
A Constitutive Model for Carbon Black Filled Rubber: Experimental Investigations and Mathematical Representation
,”
Continuum Mech. Thermodyn.
,
8
(
3
), pp.
153
169
.
6.
Mullins
,
L.
,
1969
, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
,
42
(
1
), pp.
339
362
.
7.
Boyce
,
M. C.
, and
Arruda
,
E. M.
,
2000
, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
,
73
(
3
), pp.
504
523
.
8.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London Ser. A
,
326
(
1567
), pp.
565
584
.
9.
Rivlin
,
R.
,
1948
, “
Large Elastic Deformations of Isotropic Materials—Part IV: Further Developments of the General Theory
,”
Proc. R. Soc. London Ser. A
,
241
(
835
), pp.
379
397
.
10.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
11.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
(
26–27
), pp.
3455
3482
.
12.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
13.
Holzapfel
,
G. A.
,
1996
, “
On Large Strain Viscoelasticity: Continuum Formulation and Finite Element Applications to Elastomeric Structures
,”
Int. J. Numer. Methods Eng.
,
39
(
22
), pp.
3903
3926
.
14.
Haupt
,
P.
,
1993
, “
On the Mathematical Modelling of Material Behavior in Continuum Mechanics
,”
Acta Mech.
,
100
(
3–4
), pp.
129
154
.
15.
Chen
,
Y.
,
Kang
,
G.
,
Tao
,
R.
, and
Jiang
,
H.
,
2017
, “
Experimental Studies on Deformation Behaviors of Rubbery Materials Under Cyclic Loading
,”
Appl. Mech. Mater.
,
853
, pp.
106
111
.
16.
Lin
,
R. C.
, and
Schomburg
,
U.
,
2003
, “
A Finite Elastic-Viscoelastic-Elastoplastic Material Law With Damage: Theoretical and Numerical Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
13–14
), pp.
1591
1627
.
17.
Miehe
,
C.
, and
Keck
,
J.
,
2000
, “
Superimposed Finite Elastic–Viscoelastic–Plastoelastic Stress Response With Damage in Filled Rubbery Polymers. Experiments, Modelling and Algorithmic Implementation
,”
J. Mech. Phys. Solids
,
48
(
2
), pp.
323
365
.
18.
Reese
,
S.
, and
Wriggers
,
P.
,
1997
, “
A Material Model for Rubber-Like Polymers Exhibiting Plastic Deformation: Computational Aspects and a Comparison With Experimental Results
,”
Comput. Methods Appl. Mech. Eng.
,
148
(
3–4
), pp.
279
298
.
19.
Valanis
,
K. C.
,
1971
, “
A Theory of Viscoplasticity Without a Yield Surface—Part I: General Theory
,”
Arch. Mech.
,
23
(
4
), pp.
517
534
.
20.
Valanis
,
K. C.
,
1971
, “
A Theory of Viscoplasticity Without a Yield Surface—Part II: Application to Mechanical Behaviour of Metals
,”
Arch. Mech.
,
23
(
4
), pp.
535
551
.
21.
Harwood
,
J. A. C.
,
Mullins
,
L.
, and
Payne
,
A. R.
,
1965
, “
Stress Softening in Natural Rubber Vulcanizates—Part II: Stress Softening Effects in Pure Gum and Filler Loaded Rubbers
,”
J. Appl. Polym. Sci.
,
9
(
9
), pp.
3011
3021
.
22.
Mars
,
W. V.
, and
Fatemi
,
A.
,
2004
, “
Observations of the Constitutive Response and Characterization of Filled Natural Rubber Under Monotonic and Cyclic Multiaxial Stress States
,”
ASME J. Eng. Mater. Technol.
,
126
(
1
), pp.
19
28
.
23.
Diani
,
J.
,
Fayolle
,
B.
, and
Gilormini
,
P.
,
2009
, “
A Review on the Mullins Effect
,”
Eur. Polym. J.
,
45
(
3
), pp.
601
612
.
24.
Miehe, C.
, 1995, “
Discontinuous and Continuous Damage Evolution in Ogden-Type Large-Strain Elastic Materials
,”
Eur. J. Mech. A/Solids
,
14
(5), pp. 697–720.
25.
Ogden
,
R. W.
, and
Roxburgh
,
D. G.
,
1999
, “
A Pseudo-Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. London Ser. A
,
455
(
1988
), pp.
2861
2877
.
26.
Qi
,
H. J.
, and
Boyce
,
M. C.
,
2005
, “
Stress–Strain Behavior of Thermoplastic Polyurethanes
,”
Mech. Mater.
,
37
(
8
), pp.
817
839
.
27.
Elías-Zúñiga
,
A.
,
2005
, “
A Phenomenological Energy-Based Model to Characterize Stress-Softening Effect in Elastomers
,”
Polymer
,
46
(
10
), pp.
3496
3506
.
28.
Govindjee
,
S.
, and
Simo
,
J.
,
1991
, “
A Micro-Mechanically Based Continuum Damage Model for Carbon Black-Filled Rubbers Incorporating Mullins' Effect
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
87
112
.
29.
Marckmann
,
G.
,
Verron
,
E.
,
Gornet
,
L.
,
Chagnon
,
G.
,
Charrier
,
P.
, and
Fort
,
P.
,
2002
, “
A Theory of Network Alteration for the Mullins Effect
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
2011
2028
.
30.
Cantournet
,
S.
,
Desmorat
,
R.
, and
Besson
,
J.
,
2009
, “
Mullins Effect and Cyclic Stress Softening of Filled Elastomers by Internal Sliding and Friction Thermodynamics Model
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2255
2264
.
31.
Ayoub
,
G.
,
Zaïri
,
F.
,
Naït-Abdelaziz
,
M.
, and
Gloaguen
,
J. M.
,
2011
, “
Modeling the Low-Cycle Fatigue Behavior of Visco-Hyperelastic Elastomeric Materials Using a New Network Alteration Theory: Application to Styrene-Butadiene Rubber
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
473
495
.
32.
Ayoub
,
G.
,
Zaïri
,
F.
,
Naït-Abdelaziz
,
M.
,
Gloaguen
,
J. M.
, and
Kridli
,
G.
,
2014
, “
A Visco-Hyperelastic Damage Model for Cyclic Stress-Softening, Hysteresis and Permanent Set in Rubber Using the Network Alteration Theory
,”
Int. J. Plast.
,
54
, pp.
19
33
.
33.
Muhr
,
A. H.
,
2005
, “
Modeling the Stress-Strain Behavior of Rubber
,”
Rubber Chem. Technol.
,
78
(
3
), pp.
391
425
.
34.
Yu
,
W.
,
Chen
,
X.
,
Wang
,
Y.
,
Yan
,
L.
, and
Bai
,
N.
,
2008
, “
Uniaxial Ratchetting Behavior of Vulcanized Natural Rubber
,”
Polym. Eng. Sci.
,
48
(
1
), pp.
191
197
.
35.
Wang
,
Y.
,
Chen
,
X.
,
Yu
,
W.
, and
Yan
,
L.
,
2009
, “
Experimental Study on Multiaxial Ratcheting Behavior of Vulcanized Natural Rubber
,”
Polym. Eng. Sci.
,
49
(
3
), pp.
506
513
.
36.
Brieu
,
M.
,
Diani
,
J.
,
Mignot
,
C.
, and
Moriceau
,
C.
,
2010
, “
Response of a Carbon-Black Filled SBR Under Large Strain Cyclic Uniaxial Tension
,”
Int. J. Fatigue
,
32
(
12
), pp.
1921
1927
.
37.
Li
,
S.
,
Wang
,
H.
,
Wang
,
Y.
,
Wang
,
C.
,
Niu
,
H.
, and
Yang
,
J.
,
2013
, “
Uniaxial Ratchetting Behaviour of Cerium Oxide Filled Vulcanized Natural Rubber
,”
Polym. Test.
,
32
(
3
), pp.
468
474
.
38.
Kang
,
G.
,
2008
, “
Ratchetting: Recent Progresses in Phenomenon Observation, Constitutive Modeling and Application
,”
Int. J. Fatigue
,
30
(
8
), pp.
1448
1472
.
39.
Boyce
,
M. C.
,
Weber
,
G.
, and
Parks
,
D. M.
,
1989
, “
On the Kinematics of Finite Strain Plasticity
,”
J. Mech. Phys. Solids
,
37
(
5
), pp.
647
665
.
40.
Lemaitre
,
J.
, and
Desmorat
,
R.
,
2005
,
Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures
,
Springer-Verlag
,
Berlin
.
41.
Bergström
,
J.
, and
Boyce
,
M.
,
2001
, “
Constitutive Modeling of the Time-Dependent and Cyclic Loading of Elastomers and Application to Soft Biological Tissues
,”
Mech. Mater.
,
33
(
9
), pp.
523
530
.
You do not currently have access to this content.