The indentation of plant cells by a conical indenter is modeled. The cell wall is represented as a spherical shell consisting of a relatively stiff thin outer layer and a softer thicker inner layer. The state of the interior of the cell is idealized as a specified turgor pressure. Attention is restricted to axisymmetric deformations, and the wall material is characterized as a viscoelastic solid with different properties for the inner and outer layers. Finite deformation, quasi-static calculations are carried out. The effects of outer layer stiffness, outer layer thickness, turgor pressure, indenter sharpness, cell wall thickness, and loading rate on the indentation hardness are considered. The calculations indicate that the small indenter depth response is dominated by the cell wall material properties, whereas for a sufficiently large indenter depth, the value of the turgor pressure plays a major role. The indentation hardness is found to increase approximately linearly with a measure of indenter sharpness over the range considered. The value of the indentation hardness is affected by the rate of indentation, with a much more rapid decay of the hardness for slow loading, because there is more time for viscous relaxation during indentation.

References

References
1.
Chickarmane
,
V.
,
Roeder
,
A. H. K.
,
Tarr
,
P. T.
,
Cunha
,
A.
,
Tobin
,
C.
, and
Meyerowitz
,
E. M.
,
2010
, “
Computational Morphodynamics: A Modelling Framework to Understand Plant Growth
,”
Annu. Rev. Plant Biol.
,
61
(
1
), pp.
65
87
.
2.
Weber
,
A.
,
Braybrook
,
S.
,
Huflejt
,
M.
,
Mosca
,
G.
,
Routier-Kierzkowska
,
A. L.
, and
Smith
,
R. S.
,
2015
, “
Measuring the Mechanical Properties of Plant Cells by Combining Micro-Indentation With Osmotic Treatments
,”
J. Exp. Bot.
,
66
(
11
), pp.
3229
3241
.
3.
Geitmann
,
A.
,
2006
, “
Experimental Approaches Used to Quantify Physical Parameters at Cellular and Subcellular Levels
,”
Am. J. Bot.
,
93
(
10
), pp.
1380
1390
.
4.
Milani
,
P.
,
Braybrook
,
S. A.
, and
Boudaoud
,
A.
,
2013
, “
Shrinking the Hammer: Micromechanical Approaches to Morphogenesis
,”
J. Exp. Bot.
,
64
(
15
), pp.
4651
4662
.
5.
Routier-Kierzkowska
,
A. L.
, and
Smith
,
R. S.
,
2013
, “
Measuring the Mechanics of Morphogenesis
,”
Curr. Opin. Plant Biol.
,
16
(
1
), pp.
25
32
.
6.
Hayot
,
C. M.
,
Forouzesh
,
E.
,
Goel
,
A.
,
Avramova
,
Z.
, and
Turner
,
J. A.
,
2012
, “
Viscoelastic Properties of Cell Walls of Single Living Plant Cells Determined by Dynamic Nanoindentation
,”
J. Exp. Bot.
,
63
(
7
), pp.
2525
2540
.
7.
Beauzamy
,
L.
,
Derr
,
J.
, and
Boudaoud
,
A.
,
2015
, “
Quantifying Hydrostatic Pressure in Plant Cells by Using Indentation With an Atomic Force Microscope
,”
Biophys. J.
,
108
(
10
), pp.
2448
2456
.
8.
Clair
,
B.
,
Arinero
,
R.
,
Lvque
,
G.
,
Ramonda
,
M.
, and
Thibaut
,
B.
,
2003
, “
Imaging the Mechanical Properties of Wood Cell Layers by Atomic Force Modulation Microscopy
,”
IAWA J.
,
24
(
3
), pp.
223
230
.
9.
Wimmer
,
R.
, and
Lucas
,
B. N.
,
1997
, “
Comparing Mechanical Properties of Secondary Wall and Cell Corner Middle Lamella in Spruce Wood
,”
IAWA Bull.
,
18
(
1
), pp.
77
88
.
10.
Gindl
,
W.
,
Gupta
,
H. S.
,
Schöberl
,
T.
,
Lichtenegger
,
H. C.
, and
Fratzl
,
P.
,
2014
, “
Mechanical Properties of Spruce Wood Cell Walls by Nanoindentation
,”
Appl. Phys. A: Mater. Sci. Process.
,
79
(
8
), pp.
2069
2073
.
11.
Mosca
,
G.
,
Sapala
,
A.
,
Strauss
,
S.
,
Routier-Kierzkowska
,
A. L.
, and
Smith
,
R. S.
,
2017
, “
On the Micro-Indentation of Plant Cells in a Tissue Context
,”
Phys. Biol.
,
14
(
1
), p.
015003
.
12.
Branco
,
R.
,
Pearsall
,
E.-J.
,
Rundle
,
C. A.
,
White
,
R. G.
,
Bradby
,
J. E.
, and
Hardham
,
A. R.
,
2017
, “
Quantifying the Plant Actin Cytoskeleton Response to Applied Pressure Using Nanoindentation
,”
Protoplasma
,
254
(
2
), pp.
1127
1137
.
13.
Vella
,
D.
,
Ajdari
,
A.
,
Vaziri
,
A.
, and
Boudaoud
,
A.
,
2012
, “
The Indentation of Pressurized Elastic Shells: From Polymeric Capsules to Yeast Cells
,”
J. R. Soc. Interface
,
9
(
68
), pp.
448
455
.
14.
Milani
,
P.
,
Gholamirad
,
M.
,
Traas
,
J.
,
Arnodo
,
A.
,
Boudaoud
,
A.
,
Argoul
,
F.
, and
Hamant
,
O.
,
2011
, “
In Vivo Analysis of Local Wall Stiffness at the Shoot Apical Meristem in Arabidopsis Using Atomic Force Microscopy
,”
Plant J.
,
67
(
6
), pp.
1116
1123
.
15.
Kol
,
A.
,
Gladnikoff
,
M.
,
Barlam
,
D.
,
Shneck
,
R. Z.
,
Rein
,
A.
, and
Rousso
,
I.
,
2006
, “
Mechanical Properties of Murine Leukemia Virus Particles: Effect of Maturation
,”
Biophys. J.
,
91
(
2
), pp.
767
774
.
16.
Zelenskaya
,
A.
,
de Monvel
,
J. B.
,
Pesen
,
D.
,
Radmacher
,
M.
,
Hoh
,
J. H.
, and
Ulfendahl
,
M.
,
2005
, “
Evidence for a Highly Elastic Shell-Core Organization of Cochlear Outer Hair Cells by Local Membrane Indentation
,”
Biophys. J.
,
88
(
4
), pp.
2982
2993
.
17.
Ogbonna
,
N.
, and
Needleman
,
A.
,
2011
, “
Conical Indentation of Thick Elastic Spherical Shells
,”
J. Mech. Mater. Struct.
,
6
(
1–4
), pp.
443
452
.
18.
Tvergaard
,
V.
, and
Needleman
,
A.
,
2016
, “
Indentation of Pressurized Viscoplastic Polymer Spherical Shells
,”
J. Mech. Phys. Solids
,
93
, pp.
16
33
.
19.
Sewell
,
M. J.
,
1967
, “
On Configuration-Dependent Loading
,”
Arch. Ration. Mech. Anal.
,
23
(
5
), pp.
327
351
.
20.
Hill
,
R.
,
1970
, “
Constitutive Inequalities for Isotropic Elastic Solids Under Finite Strain
,”
Proc. R. Soc. London Ser. A
,
314
(
1519
), pp.
457
472
.
21.
Hill
,
R.
,
1978
, “
Aspects of Invariance in Solid Mechanics
,”
Advances in Applied Mechanics
, Vol.
18
,
C.-S.
Yih
, ed., Academic Press, New York, pp.
1
75
.
You do not currently have access to this content.