The membrane structure has been applied throughout different fields such as civil engineering, biology, and aeronautics, among others. In many applications, large deflections negate linearizing assumptions, and linear modes begin to interact due to the nonlinearity. This paper considers the coupling effect between vibration modes and develops the theoretical analysis of the free vibration problem for orthotropic rectangular membrane structures. Von Kármán theory is applied to model the nonlinear dynamics of these membrane structures with sufficiently large deformation. The transverse displacement fields are expanded with both symmetric and asymmetric modes, and the stress function form is built with these coupled modes. Then, a reduced model with a set of coupled equations may be obtained by the Galerkin technique, which is then solved numerically by the fourth-order Runge–Kutta method. The model is validated by means of an experimental study. The proposed model can be used to quantitatively predict the softening behavior of amplitude–frequency, confirm the asymmetric characters of mode space distribution, and reveal the influence of various geometric and material parameters on the nonlinear dynamics.

References

1.
Chadha
,
M.
, and
Todd
,
M. D.
,
2017
, “
A Generalized Approach for Reconstructing the Three-Dimensional Shape of Slender Structures Including the Effects of Curvature, Shear, Torsion, and Elongation
,”
ASME J. Appl. Mech.
,
84
(
4
), p.
041003
.
2.
Kumar
,
N.
, and
DasGupta
,
A.
,
2017
, “
On the Static and Dynamic Contact Problem of an Inflated Spherical Viscoelastic Membrane
,”
ASME J. Appl. Mech.
,
82
(
12
), p. 121010.
3.
Liu
,
C. J.
,
Deng
,
X. W.
, and
Zheng
,
Z. L.
,
2017
, “
Nonlinear Wind-Induced Aerodynamic Stability of Orthotropic Saddle Membrane Structures
,”
J. Wind Eng. Ind. Aerodyn.
,
164
, pp.
119
127
.
4.
Hu
,
Y.
,
Chen
,
W. J.
,
Chen
,
Y. F.
,
Zhang
,
D. X.
, and
Qiu
,
Z. Y.
,
2017
, “
Modal Behaviors and Influencing Factors Analysis of Inflated Membrane Structures
,”
Eng. Struct.
,
132
, pp.
413
427
.
5.
Kang
,
S. W.
, and
Lee
,
J. M.
,
2002
, “
Free Vibration Analysis of Composite Rectangular Membranes With an Oblique Interface
,”
J. Sound Vib.
,
251
(
3
), pp.
505
517
.
6.
Houmat
,
A.
,
2005
, “
Free Vibration Analysis of Membranes Using the h-p Version of the Finite Element Method
,”
J. Sound Vib.
,
282
(
1–2
), pp.
401
410
.
7.
Wu
,
W. X.
,
Shu
,
C.
, and
Wang
,
C. M.
,
2007
, “
Vibration Analysis of Arbitrarily Shaped Membranes Using Local Radial Basis of Function-Based Differential Quadrature Method
,”
J. Sound Vib.
,
306
(
1–2
), pp.
252
270
.
8.
Amore
,
P.
,
2009
, “
A New Method for Studying the Vibration of Non-Homogeneous Membranes
,”
J. Sound Vib.
,
321
(
1–2
), pp.
104
114
.
9.
Noga
,
S.
,
2010
, “
Free Transverse Vibration Analysis of an Elastically Connected Annular and Circular Double-Membrane Compound System
,”
J. Sound Vib.
,
329
(
9
), pp.
1507
1522
.
10.
Soares
,
M. R.
, and
Goncalves
,
P. B.
,
2014
, “
Large-Amplitude Nonlinear Vibrations of a Mooney–Rivlin Rectangular Membrane
,”
J. Sound Vib.
,
333
(
13
), pp.
2920
2935
.
11.
Zheng
,
Z. L.
,
Liu
,
C. J.
,
He
,
X. T.
, and
Chen
,
S. L.
,
2009
, “
Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection
,”
Math. Prol. Eng.
,
2009
, p. 634362.
12.
Liu
,
C. J.
,
Zheng
,
Z. L.
,
Long
,
J.
,
Guo
,
J. J.
, and
Wu
,
K.
,
2013
, “
Dynamic Analysis for Nonlinear Vibration of Prestressed Orthotropic Membranes With Viscous Damping
,”
Int. J. Struct. Stab. Dyn.
,
13
(
02
), p.
1350018
.
13.
Liu
,
C. J.
,
Todd
,
M. D.
,
Zheng
,
Z. L.
, and
Wu
,
Y. Y.
,
2018
, “
A Nondestructive Method for the Pretension Detection in Membrane Structures Based on Nonlinear Vibration Response to Impact
,”
Struct. Health Monit.
,
17
(
1
), pp.
67
79
.
14.
Guo
,
J. J.
,
Zheng
,
Z. L.
, and
Wu
,
S.
,
2015
, “
An Impact Vibration Experimental Research on the Pretension Rectangular Membrane Structure
,”
Adv. Mater. Sci. Eng.
,
2015
, p. 387153.
15.
Zheng
,
Z. L.
,
Lu
,
F. M.
,
He
,
X. T.
,
Sun
,
J. Y.
,
Xie
,
C. X.
, and
He
,
C.
,
2016
, “
Large Displacement Analysis of Rectangular Orthotropic Membranes Under Stochastic Impact Loading
,”
Int. J. Struct. Stab. Dyn.
,
16
(
01
), p.
1640007
.
16.
Li
,
D.
,
Zheng
,
Z. L.
,
Liu
,
C. Y.
,
Zhang
,
G. X.
,
Lian
,
Y. S.
,
Tian
,
Y.
,
Xiao
,
Y.
, and
Xie
,
X. M.
,
2017
, “
Dynamic Response of Rectangular Prestressed Membrane Subjected to Uniform Impact Load
,”
Arch. Civ. Mech. Eng.
,
17
(
3
), pp.
586
598
.
17.
Laura
,
P. A. A.
,
Bambill
,
D. V.
, and
Gutierrez
,
R. H.
,
1997
, “
A Note on Transverse Vibration of Circular, Annular, Composite Membranes
,”
J. Sound Vib.
,
205
(
5
), pp.
692
697
.
18.
Touze
,
C.
,
Thomas
,
O.
, and
Huberdeau
,
A.
,
2004
, “
Asymptotic Non-Linear Normal Modes for Large-Amplitude Vibrations of Continuous Structures
,”
Comput. Struct.
,
82
(31–32), pp.
2671
2682
.
19.
Lau
,
S.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
.
20.
Goncalves
,
P. B.
, and
Del Prado
,
Z. J. G. N.
,
2002
, “
Nonlinear Oscillations and Stability of Parametrically Excited Cylindrical Shells
,”
Meccanica
,
37
(
6
), pp.
569
597
.
21.
Goncalves
,
P. B.
,
Silva
,
F. M. A.
, and
Del Prado
,
Z. J. G. N.
,
2008
, “
Low-Dimensional Models for the Nonlinear Vibration Analysis of Cylindrical Shells Based on a Perturbation Procedure and Proper Orthogonal Decomposition
,”
J. Sound Vib.
,
315
(3), pp.
641
663
.
22.
Lazarus
,
A.
,
Thomas
,
O.
, and
Deü
,
J. F.
,
2012
, “
Finite Element Reduced Order Models for Nonlinear Vibrations of Piezoelectric Layered Beams With Applications to NEMS
,”
Finite Elements Anal. Des.
,
49
(1), pp.
35
51
.
23.
Pesheck
,
E.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2002
, “
Modal Reduction of a Nonlinear Rotating Beam Through Nonlinear Normal Modes
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
229
236
.
24.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.
You do not currently have access to this content.