Buckling of multilayer graphene sheets (MLGSs) subjected to an axial compressive load in plane-strain condition is studied. Closed-form solutions for buckling load of MLGSs are obtained based on a continuum model for MLGSs. Two different kinematic assumptions, which lead to MLGS beam, which was recently proposed by the authors, and the Euler beam, are used to obtain the buckling loads. The obtained solutions yield significantly different buckling loads when the axial length is small. To validate obtained results, molecular dynamics (MD) simulations are conducted, and they show that the MLGS beam model well captures the buckling load of MLGSs. The buckling solution of MLGS beam model provides two interesting facts. First, the buckling load of MLGSs coincides with the Euler buckling load when the length is large. Second, when the number of layers is large, the buckling strain converges to a finite value, and could be expressed as a linear combination of the buckling strain of single-layer graphene and the ratio between the shear rigidity of interlayer and the tensile rigidity of graphene layer. We validate the asymptotic behavior of buckling strain through MD simulations and show that buckling occurs even when the overall thickness is larger than the axial length. Finally, we present a diagram that contains buckling strain of MLGSs according to the boundary conditions, the number of layers, and the axial length.

References

References
1.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
2.
Xu
,
M.
,
Liang
,
T.
,
Shi
,
M.
, and
Chen
,
H.
,
2013
, “
Graphene-Like Two-Dimensional Materials
,”
Chem. Rev.
,
113
(
5
), pp.
3766
3798
.
3.
Ashton
,
M.
,
Paul
,
J.
,
Sinnott
,
S. B.
, and
Hennig
,
R. G.
,
2017
, “
Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials
,”
Phys. Rev. Lett.
,
118
(
10
), p.
106101
.
4.
Morpurgo
,
A. F.
,
2015
, “
Ten Years of Nature Physics: The ABC of 2D Materials
,”
Nat. Phys.
,
11
(
8
), p.
625
.
5.
Lee
,
J.-H.
,
Loya
,
P. E.
,
Lou
,
J.
, and
Thomas
,
E. L.
,
2014
, “
Dynamic Mechanical Behavior of Multilayer Graphene Via Supersonic Projectile Penetration
,”
Science
,
346
(
6213
), pp.
1092
1096
.
6.
Lui
,
C. H.
,
Malard
,
L. M.
,
Kim
,
S.
,
Lantz
,
G.
,
Laverge
,
F. E.
,
Saito
,
R.
, and
Heinz
,
T. F.
,
2012
, “
Observation of Layer-Breathing Mode Vibrations in Few-Layer Graphene Through Combination Raman Scattering
,”
Nano Lett.
,
12
(
11
), pp.
5539
5544
.
7.
Zhou
,
L.
,
Wang
,
Y.
, and
Cao
,
G.
,
2013
, “
Estimating the Elastic Properties of Few-Layer Graphene From the Free-Standing Indentation Response
,”
J. Phys.: Condens. Matter
,
25
(
47
), p.
475301
.
8.
Shahil
,
K. M.
, and
Balandin
,
A. A.
,
2012
, “
Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials
,”
Solid State Commun.
,
152
(
15
), pp.
1331
1340
.
9.
Shen
,
X.
,
Wang
,
Z.
,
Wu
,
Y.
,
Liu
,
X.
,
He
,
Y.-B.
, and
Kim
,
J.-K.
,
2016
, “
Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites
,”
Nano Lett.
,
16
(
6
), pp.
3585
3593
.
10.
Ghosh
,
S.
,
Bao
,
W.
,
Nika
,
D. L.
,
Subrina
,
S.
,
Pokatilov
,
E. P.
,
Lau
,
C. N.
, and
Balandin
,
A. A.
,
2010
, “
Dimensional Crossover of Thermal Transport in Few-Layer Graphene Materials
,” preprint
arXiv:1003.5247
.https://arxiv.org/abs/1003.5247
11.
Rodrigo
,
D.
,
Tittl
,
A.
,
Limaj
,
O.
,
De Abajo
,
F. J. G.
,
Pruneri
,
V.
, and
Altug
,
H.
,
2017
, “
Double-Layer Graphene for Enhanced Tunable Infrared Plasmonics
,”
Light: Sci. Appl.
,
6
(
6
), p. e16277.
12.
Bao
,
W.
,
Jing
,
L.
,
Velasco
,
J.
,
Lee
,
Y.
,
Liu
,
G.
,
Tran
,
D.
,
Standley
,
B.
,
Aykol
,
M.
,
Cronin
,
S. B.
,
Smirnov
,
D.
,
Koshino
,
M.
,
McCann
,
E.
,
Bockrath
,
M.
, and
Lau
,
C. N.
,
2011
, “
Stacking-Dependent Band Gap and Quantum Transport in Trilayer Graphene
,”
Nat. Phys.
,
7
(
12
), pp.
948
952
.
13.
Wu
,
J.-B.
,
Zhang
,
X.
,
Ijäs
,
M.
,
Han
,
W.-P.
,
Qiao
,
X.-F.
,
Li
,
X.-L.
,
Jiang
,
D.-S.
,
Ferrari
,
A. C.
, and
Tan
,
P.-H.
,
2014
, “
Resonant Raman Spectroscopy of Twisted Multilayer Graphene
,”
Nat. Commun.
,
5
, p.
5309
.
14.
Ho
,
Y.
,
Wu
,
J.
,
Chiu
,
Y.
,
Wang
,
J.
, and
Lin
,
M.
,
2010
, “
Electronic and Optical Properties of Monolayer and Bilayer Graphene
,”
Philos. Trans. R. Soc. London A
,
368
(
1932
), pp.
5445
5458
.
15.
Ji
,
Y.
,
Lee
,
S.
,
Cho
,
B.
,
Song
,
S.
, and
Lee
,
T.
,
2011
, “
Flexible Organic Memory Devices With Multilayer Graphene Electrodes
,”
ACS Nano
,
5
(
7
), pp.
5995
6000
.
16.
Choi
,
Y.-Y.
,
Kang
,
S. J.
,
Kim
,
H.-K.
,
Choi
,
W. M.
, and
Na
,
S.-I.
,
2012
, “
Multilayer Graphene Films as Transparent Electrodes for Organic Photovoltaic Devices
,”
Sol. Energy Mater. Sol. Cells
,
96
, pp.
281
285
.
17.
Ghosh
,
R.
,
Singh
,
A.
,
Santra
,
S.
,
Ray
,
S. K.
,
Chandra
,
A.
, and
Guha
,
P. K.
,
2014
, “
Highly Sensitive Large-Area Multi-Layered Graphene-Based Flexible Ammonia Sensor
,”
Sens. Actuators B
,
205
, pp.
67
73
.
18.
Todorović
,
D.
,
Matković
,
A.
,
Milićević
,
M.
,
Jovanović
,
D.
,
Gajić
,
R.
,
Salom
,
I.
, and
Spasenović
,
M.
,
2015
, “
Multilayer Graphene Condenser Microphone
,”
2D Mater.
,
2
(
4
), p.
045013
.
19.
Dissanayake
,
D.
,
Ashraf
,
A.
,
Dwyer
,
D.
,
Kisslinger
,
K.
,
Zhang
,
L.
,
Pang
,
Y.
,
Efstathiadis
,
H.
, and
Eisaman
,
M.
,
2016
, “
Spontaneous and Strong Multi-Layer Graphene n-Doping on Soda-Lime Glass and Its Application in Graphene-Semiconductor Junctions
,”
Sci. Rep.
,
6
(
1
), p.
21070
.
20.
Weber
,
P.
,
Güttinger
,
J.
,
Noury
,
A.
,
Vergara-Cruz
,
J.
, and
Bachtold
,
A.
,
2016
, “
Force Sensitivity of Multilayer Graphene Optomechanical Devices
,”
Nat. Commun.
,
7
, p. 12496.
21.
Pereira
,
V. M.
, and
Neto
,
A. C.
,
2009
, “
Strain Engineering of Graphene's Electronic Structure
,”
Phys. Rev. Lett.
,
103
(
4
), p.
046801
.
22.
Sedelnikova
,
O.
,
Bulusheva
,
L.
, and
Okotrub
,
A.
,
2011
, “
Ab Initio Study of Dielectric Response of Rippled Graphene
,”
J. Chem. Phys.
,
134
(
24
), p.
244707
.
23.
Guinea
,
F.
,
Horovitz
,
B.
, and
Le Doussal
,
P.
,
2008
, “
Gauge Field Induced by Ripples in Graphene
,”
Phys. Rev. B
,
77
(
20
), p.
205421
.
24.
Isacsson
,
A.
,
Jonsson
,
L. M.
,
Kinaret
,
J. M.
, and
Jonson
,
M.
,
2008
, “
Electronic Superlattices in Corrugated Graphene
,”
Phys. Rev. B
,
77
(
3
), p.
035423
.
25.
Tsoukleri
,
G.
,
Parthenios
,
J.
,
Papagelis
,
K.
,
Jalil
,
R.
,
Ferrari
,
A. C.
,
Geim
,
A. K.
,
Novoselov
,
K. S.
, and
Galiotis
,
C.
,
2009
, “
Subjecting a Graphene Monolayer to Tension and Compression
,”
Small
,
5
(
21
), pp.
2397
2402
.
26.
Frank
,
O.
,
Tsoukleri
,
G.
,
Parthenios
,
J.
,
Papagelis
,
K.
,
Riaz
,
I.
,
Jalil
,
R.
,
Novoselov
,
K. S.
, and
Galiotis
,
C.
,
2010
, “
Compression Behavior of Single-Layer Graphenes
,”
ACS Nano
,
4
(
6
), pp.
3131
3138
.
27.
Sakhaee-Pour
,
A.
,
2009
, “
Elastic Buckling of Single-Layered Graphene Sheet
,”
Comput. Mater. Sci.
,
45
(
2
), pp.
266
270
.
28.
Lu
,
Q.
, and
Huang
,
R.
,
2009
, “
Nonlinear Mechanics of Single-Atomic-Layer Graphene Sheets
,”
Int. J. Appl. Mech.
,
1
(
3
), pp.
443
467
.
29.
Neek-Amal
,
M.
, and
Peeters
,
F.
,
2010
, “
Graphene Nanoribbons Subjected to Axial Stress
,”
Phys. Rev. B
,
82
(
8
), p.
085432
.
30.
Zhang
,
Y.
, and
Liu
,
F.
,
2011
, “
Maximum Asymmetry in Strain Induced Mechanical Instability of Graphene: Compression Versus Tension
,”
Appl. Phys. Lett.
,
99
(
24
), p.
241908
.
31.
Zhang
,
H.-Y.
,
Jiang
,
J.-W.
,
Chang
,
T.
,
Guo
,
X.
, and
Park
,
H. S.
,
2016
, “
The Effects of Free Edge Interaction-Induced Knotting on the Buckling of Monolayer Graphene
,”
Int. J. Solids Struct.
,
100–101
, pp.
446
455
.
32.
Pradhan
,
S.
, and
Murmu
,
T.
,
2009
, “
Small Scale Effect on the Buckling of Single-Layered Graphene Sheets Under Biaxial Compression Via Nonlocal Continuum Mechanics
,”
Comput. Mater. Sci.
,
47
(
1
), pp.
268
274
.
33.
Pilafkan
,
R.
,
Irzarahimi
,
M. K.
, and
Namin
,
S. A.
,
2017
, “
Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation
,”
World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng.
,
11
(
4
), pp.
301
306
.http://scholar.waset.org/1307-6892/10006878
34.
Sahmani
,
S.
, and
Fattahi
,
A.
,
2018
, “
Development of Efficient Size-Dependent Plate Models for Axial Buckling of Single-Layered Graphene Nanosheets Using Molecular Dynamics Simulation
,”
Microsyst. Technol.
,
24
(
2
), pp.
1265
1277
.
35.
Soleimani
,
A.
,
Naei
,
M. H.
, and
Mashhadi
,
M. M.
,
2017
, “
Buckling Analysis of Graphene Sheets Using Nonlocal Isogeometric Finite Element Method for NEMS Applications
,”
Microsyst. Technol.
,
23
(
7
), pp.
2859
2871
.
36.
Chandra
,
Y.
,
Chowdhury
,
R.
,
Adhikari
,
S.
, and
Scarpa
,
F.
,
2011
, “
Elastic Instability of Bilayer Graphene Using Atomistic Finite Element
,”
Physica E
,
44
(
1
), pp.
12
16
.
37.
Shi
,
J.-X.
,
Ni
,
Q.-Q.
,
Lei
,
X.-W.
, and
Natsuki
,
T.
,
2011
, “
Nonlocal Elasticity Theory for the Buckling of Double-Layer Graphene Nanoribbons Based on a Continuum Model
,”
Comput. Mater. Sci.
,
50
(
11
), pp.
3085
3090
.
38.
Sgouros
,
A.
,
Kalosakas
,
G.
,
Galiotis
,
C.
, and
Papagelis
,
K.
,
2016
, “
Uniaxial Compression of Suspended Single and Multilayer Graphenes
,”
2D Mater.
,
3
(
2
), p.
25033
.
39.
Jandaghian
,
A.
, and
Rahmani
,
O.
,
2017
, “
Buckling Analysis of Multi-Layered Graphene Sheets Based on a Continuum Mechanics Model
,”
Appl. Phys. A
,
123
(
5
), p.
324
.
40.
Ren
,
M.
,
Liu
,
Y.
,
Liu
,
J. Z.
,
Wang
,
L.
, and
Zheng
,
Q.
,
2016
, “
Anomalous Elastic Buckling of Layered Crystalline Materials in the Absence of Structure Slenderness
,”
J. Mech. Phys. Solids
,
88
, pp.
83
99
.
41.
Kim
,
M.
, and
Im
,
S.
,
2017
, “
A Plate Model for Multilayer Graphene Sheets and Its Finite Element Implementation Via Corotational Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
102
138
.
42.
Liu
,
Y.
,
Xu
,
Z.
, and
Zheng
,
Q.
,
2011
, “
The Interlayer Shear Effect on Graphene Multilayer Resonators
,”
J. Mech. Phys. Solids
,
59
(
8
), pp.
1613
1622
.
43.
Kelly
,
B.
,
1981
,
Physics of Graphite
,
Applied Science Publishers
,
London
.
44.
Jiang
,
H.
,
Khang
,
D.-Y.
,
Song
,
J.
,
Sun
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2007
, “
Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports
,”
Proc. Natl. Acad. Sci.
,
104
(
40
), pp.
15607
15612
.
45.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
46.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
47.
Shield
,
R.
, and
Im
,
S.
,
1986
, “
Small Strain Deformations of Elastic Beams and Rods Including Large Deflections
,”
Z. Angew. Math. Phys.
,
37
(
4
), pp.
491
513
.
48.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
, Prentice Hall, Upper Saddle River, NJ, pp. 630–636.
You do not currently have access to this content.