Through the analysis of a model problem, a thin elastic plate bonded to an elastic foundation, we address several issues related to the miniature bulge test for measuring the energy-release rate associated with the interfacial fracture of a bimaterial system, where one of the constituents is a thin foil. These issues include the effect of the substrate compliance on the interpretation of the energy release rate, interfacial strength, and the identification of the boundary of the deforming bulge or the location of the interfacial crack front. The analysis also suggests a way for measuring the so-called foundation modulus, which characterizes the property of the substrate. An experimental example, a stainless steel thin foil bonded to an aluminum substrate through hot-isostatic-pressing (HIP), is used to illustrate and highlight some of the conclusions of the model analysis.

References

References
1.
Dannenberg
,
H.
,
1961
, “
Measurement of Adhesion by a Blister Method
,”
J. Appl. Polym. Sci.
,
5
(
14
), pp.
125
134
.
2.
Williams
,
M. L.
,
1969
, “
The Continuum Interpretation for Fracture and Adhesion
,”
J. Appl. Polym. Sci.
,
13
(
1
), pp.
29
40
.
3.
Bennett
,
S. J.
,
DeVries
,
K. L.
, and
Williams
,
M. L.
,
1974
, “
Adhesive Fracture Mechanics
,”
Int. J. Fract.
,
10
(
1
), pp.
33
43
.
4.
Malyshev
,
B. M.
, and
Salganik
,
R. L.
,
1965
, “
The Strength of Adhesive Joints Using the Theory of Cracks
,”
Int. J. Fract. Mech.
,
1
(2), pp.
114
128
.
5.
Hinkley
,
J. A.
,
1983
, “
A Blister Test for Adhesion of Polymer Films to SiO2
,”
J. Adhes.
,
16
(2), pp.
115
125
.
6.
Jensen
,
H. M.
,
1991
, “
The Blister Test for Interface Toughness Measurement
,”
Eng. Fract. Mech.
,
40
(
3
), pp.
475
486
.
7.
Jensen
,
H. M.
,
1998
, “
Analysis of Mode Mixity in Blister Tests
,”
Int. J. Fract.
,
94
(
1
), pp.
79
88
.
8.
Cotterell
,
B.
, and
Chen
,
Z.
,
1997
, “
The Blister Test—Transition From Plate to Membrane Behaviour for an Elastic Material
,”
Int. J. Fract.
,
86
, pp.
191
198
.
9.
Sutton
,
M. A.
,
McNeill
,
S. R.
,
Helm
,
J. D.
, and
Chao
,
Y. J.
,
2000
, “
Advances in Two-Dimensional and Three-Dimensional Computer Vision
,”
Top. Appl. Phys.
,
77
, pp.
323
372
.
10.
Liu
,
C.
,
Lovato
,
M. L.
,
Alexander
,
D. J.
,
Clarke
,
K. D.
,
Mara
,
N. A.
,
Mook
,
W. M.
,
Prime
,
M. B.
, and
Brown
,
D. W.
,
2012
, “
Experimental Investigation of Bonding Strength and Residual Stresses in LEU Fuel Plates
,”
34th International Meeting on Reduced Enrichment for Research and Test Reactors
(
RERTR
2012), Warsaw, Poland, Oct. 14–17.https://www.mpif.org/focus_pm/select/select13-5.pdf
11.
Liu
,
C.
,
Lovato
,
M. L.
,
Clarke
,
K. D.
,
Alexander
,
D. J.
, and
Blumenthal
,
W. R.
,
2017
, “
Miniature Bulge Test and Energy Release Rate of HIPed Aluminum/Aluminum Interfacial Fracture
,”
J. Mech. Phys. Solids
, in press.
12.
Liu
,
C.
,
Yeager
,
J. D.
, and
Ramos
,
K. J.
,
2015
, “
Bonding Energy of Sylgard on Fused Quartz: An Experimental Investigation
,”
Philos. Mag.
,
95
(
4
), pp.
346
366
.
13.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
2nd ed.
,
McGraw-Hill Book
, London.
14.
Williams
,
M. L.
,
1970
, “
The Fracture Threshold for an Adhesive Interlayer
,”
J. Appl. Polym. Sci.
,
14
(
5
), pp.
1121
1126
.
15.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
, New York.
16.
Love
,
A. E. H.
,
1927
,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
Cambridge University Press
, Cambridge, UK.
17.
Sokolnikoff
,
I. S.
,
1956
,
Mathematical Theory of Elasticity
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.