Soft network materials that incorporate wavy filamentary microstructures have appealing applications in bio-integrated devices and tissue engineering, in part due to their bio-mimetic mechanical properties, such as “J-shaped” stress–strain curves and negative Poisson's ratios. The diversity of the microstructure geometry as well as the network topology provides access to a broad range of tunable mechanical properties, suggesting a high degree of design flexibility. The understanding of the underlying microstructure-property relationship requires the development of a general mechanics theory. Here, we introduce a theoretical model of infinitesimal deformations for the soft network materials constructed with periodic lattices of arbitrarily shaped microstructures. Taking three representative lattice topologies (triangular, honeycomb, and square) as examples, we obtain analytic solutions of Poisson's ratio and elastic modulus based on the mechanics model. These analytic solutions, as validated by systematic finite element analyses (FEA), elucidated different roles of lattice topology and microstructure geometry on Poisson's ratio of network materials with engineered zigzag microstructures. With the aid of the theoretical model, a crescent-shaped microstructure was devised to expand the accessible strain range of network materials with relative constant Poisson's ratio under large levels of stretching. This study provides theoretical guidelines for the soft network material designs to achieve desired Poisson's ratio and elastic modulus.

References

1.
Yang
,
W.
,
Sherman
,
V. R.
,
Gludovatz
,
B.
,
Schaible
,
E.
,
Stewart
,
P.
,
Ritchie
,
R. O.
, and
Meyers
,
M. A.
,
2015
, “
On the Tear Resistance of Skin
,”
Nat. Commun.
,
6
, p.
6649
.
2.
Ling
,
S.
,
Zhang
,
Q.
,
Kaplan
,
D. L.
,
Omenetto
,
F.
,
Buehler
,
M. J.
, and
Qin
,
Z.
,
2016
, “
Printing of Stretchable Silk Membranes for Strain Measurements
,”
Lab Chip
,
16
(
13
), pp.
2459
2466
.
3.
Hribar
,
K. C.
,
Soman
,
P.
,
Warner
,
J.
,
Chung
,
P.
, and
Chen
,
S. C.
,
2014
, “
Light-Assisted Direct-Write of 3D Functional Biomaterials
,”
Lab Chip
,
14
(
2
), pp.
268
275
.
4.
Chamiot-Clerc
,
P.
,
Copie
,
X.
,
Renaud
,
J.-F.
,
Safar
,
M.
, and
Girerd
,
X.
,
1998
, “
Comparative Reactivity and Mechanical Properties of Human Isolated Internal Mammary and Radial Arteries
,”
Cardiovasc. Res.
,
37
(
3
), pp.
811
819
.
5.
Meyers
,
M. A.
,
McKittrick
,
J.
, and
Chen
,
P.-Y.
,
2013
, “
Structural Biological Materials: Critical Mechanics-Materials Connections
,”
Science
,
339
(
6121
), pp.
773
779
.
6.
Cranford
,
S. W.
,
Tarakanova
,
A.
,
Pugno
,
N. M.
, and
Buehler
,
M. J.
,
2012
, “
Nonlinear Material Behaviour of Spider Silk Yields Robust Webs
,”
Nature
,
482
(
7383
), p.
72
.
7.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2004
, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
264
275
.
8.
Fratzl
,
P.
,
Misof
,
K.
,
Zizak
,
I.
,
Rapp
,
G.
,
Amenitsch
,
H.
, and
Bernstorff
,
S.
,
1998
, “
Fibrillar Structure and Mechanical Properties of Collagen
,”
J. Struct. Biol.
,
122
(
1–2
), pp.
119
122
.
9.
Gautieri
,
A.
,
Vesentini
,
S.
,
Redaelli
,
A.
, and
Buehler
,
M. J.
,
2011
, “
Hierarchical Structure and Nanomechanics of Collagen Microfibrils From the Atomistic Scale Up
,”
Nano Lett.
,
11
(
2
), pp.
757
766
.
10.
Keten
,
S.
,
Xu
,
Z.
,
Ihle
,
B.
, and
Buehler
,
M. J.
,
2010
, “
Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of β-Sheet Crystals in Silk
,”
Nat. Mater.
,
9
(
4
), p.
359
.
11.
Miserez
,
A.
,
Wasko
,
S. S.
,
Carpenter
,
C. F.
, and
Waite
,
J. H.
,
2009
, “
Non-Entropic and Reversible Long-Range Deformation of an Encapsulating Bioelastomer
,”
Nat. Mater.
,
8
(
11
), p.
910
.
12.
Van Dillen
,
T.
,
Onck
,
P.
, and
Van der Giessen
,
E.
,
2008
, “
Models for Stiffening in Cross-Linked Biopolymer Networks: A Comparative Study
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2240
2264
.
13.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), p.
17066
.
14.
Jang
,
K.-I.
,
Chung
,
H. U.
,
Xu
,
S.
,
Lee
,
C. H.
,
Luan
,
H.
,
Jeong
,
J.
,
Cheng
,
H.
,
Kim
,
G.-T.
,
Han
,
S. Y.
,
Lee
,
J. W.
,
Kim
,
J.
,
Cho
,
M.
,
Miao
,
F.
,
Yang
,
Y.
,
Jung
,
H. N.
,
Flavin
,
M.
,
Liu
,
H.
,
Kong
,
G. W.
,
Yu
,
K. J.
,
Rhee
,
S. I.
,
Chung
,
J.
,
Kim
,
B.
,
Kwak
,
J. W.
,
Yun
,
M. H.
,
Kim
,
J. Y.
,
Song
,
Y. M.
,
Paik
,
U.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Soft Network Composite Materials With Deterministic and Bio-Inspired Designs
,”
Nat. Commun.
,
6
(
1
), p.
7566
.
15.
Zhang
,
Y.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials
,”
Nat. Rev. Mater.
,
2
(
4
), p.
17019
.
16.
Wang
,
S.
,
Li
,
M.
,
Wu
,
J.
,
Kim
,
D.-H.
,
Lu
,
N.
,
Su
,
Y.
,
Kang
,
Z.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Mechanics of Epidermal Electronics
,”
ASME. J. Appl. Mech.
,
79
(
3
), p.
031022
.
17.
Wang
,
L.
,
Qiao
,
S.
,
Ameri
,
S. K.
,
Jeong
,
H.
, and
Lu
,
N.
,
2017
, “
A Thin Elastic Membrane Conformed to a Soft and Rough Substrate Subjected to Stretching/Compression
,”
ASME. J. Appl. Mech.
,
84
(
11
), p.
111003
.
18.
Ma
,
Y.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Design and Application of ‘J-Shaped’Stress–Strain Behavior in Stretchable Electronics: A Review
,”
Lab Chip
,
17
(
10
), pp.
1689
1704
.
19.
Su
,
Y. W.
,
Ping
,
X. C.
,
Yu
,
K. J.
,
Lee
,
J. W.
,
Fan
,
J. A.
,
Wang
,
B.
,
Li
,
M.
,
Li
,
R.
,
Harburg
,
D. V.
,
Huang
,
Y. A.
,
Yu
,
C. J.
,
Mao
,
S. M.
,
Shim
,
J.
,
Yang
,
Q. L.
,
Lee
,
P. Y.
,
Armonas
,
A.
,
Choi
,
K. J.
,
Yang
,
Y. C.
,
Paik
,
U.
,
Chang
,
T.
,
Dawidczyk
,
T. J.
,
Huang
,
Y. G.
,
Wang
,
S. D.
, and
Rogers
,
J. A.
,
2017
, “
In-Plane Deformation Mechanics for Highly Stretchable Electronics
,”
Adv. Mater.
,
29
(
8
), p.
1604989
.
20.
Ban
,
E.
,
Barocas
,
V. H.
,
Shephard
,
M. S.
, and
Picu
,
C. R.
,
2016
, “
Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding Matrices
,”
ASME. J. Appl. Mech.
,
83
(
4
), p.
041008
.
21.
Jungebluth
,
P.
,
Haag
,
J. C.
,
Sjöqvist
,
S.
,
Gustafsson
,
Y.
,
Rodríguez
,
A. B.
,
Del Gaudio
,
C.
,
Bianco
,
A.
,
Dehnisch
,
I.
,
Uhlén
,
P.
, and
Baiguera
,
S.
,
2014
, “
Tracheal Tissue Engineering in Rats
,”
Nat. Protoc.
,
9
(
9
), p.
2164
.
22.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME. J. Appl. Mech.
,
83
(
11
), p.
111008
.
23.
Ma
,
Q.
,
Cheng
,
H.
,
Jang
,
K.-I.
,
Luan
,
H.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2016
, “
A Nonlinear Mechanics Model of Bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures
,”
J. Mech. Phys. Solids
,
90
, pp.
179
202
.
24.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
Soft Network Materials With Isotropic Negative Poisson's Ratios Over Large Strains
,”
Soft Matter
,
14
(
5
), pp.
693
703
.
25.
Shan
,
S.
,
Kang
,
S. H.
,
Zhao
,
Z.
,
Fang
,
L.
, and
Bertoldi
,
K.
,
2015
, “
Design of Planar Isotropic Negative Poisson's Ratio Structures
,”
Extreme Mech. Lett.
,
4
, pp.
96
102
.
26.
Salit
,
V.
, and
Weller
,
T.
,
2009
, “
On the Feasibility of Introducing Auxetic Behavior Into Thin-Walled Structures
,”
Acta Mater.
,
57
(
1
), pp.
125
135
.
27.
Alderson
,
K.
,
Fitzgerald
,
A.
, and
Evans
,
K.
,
2000
, “
The Strain Dependent Indentation Resilience of Auxetic Microporous Polyethylene
,”
J. Mater. Sci.
,
35
(
16
), pp.
4039
4047
.
28.
Coenen
,
V.
, and
Alderson
,
K.
,
2011
, “
Mechanisms of Failure in the Static Indentation Resistance of Auxetic Carbon Fibre Laminates
,”
Phys. Status Solidi (b)
,
248
(
1
), pp.
66
72
.
29.
Carta
,
G.
,
Brun
,
M.
, and
Baldi
,
A.
,
2016
, “
Design of a Porous Material With Isotropic Negative Poisson's Ratio
,”
Mech. Mater.
,
97
, pp.
67
75
.
30.
Chen
,
Y. Y.
,
Li
,
T. T.
,
Scarpa
,
F.
, and
Wang
,
L. F.
,
2017
, “
Lattice Metamaterials With Mechanically Tunable Poisson's Ratio for Vibration Control
,”
Phys. Rev. Appl.
,
7
(
2
), p.
024012
.
31.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
32.
Kim
,
D. H.
,
Lu
,
N. S.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S. D.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T. I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L. Z.
,
Li
,
M.
,
Chung
,
H. J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y. W.
,
Omenetto
,
F. G.
,
Huang
,
Y. G.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
33.
Xu
,
S.
,
Zhang
,
Y.
,
Jia
,
L.
,
Mathewson
,
K. E.
,
Jang
,
K.-I.
,
Kim
,
J.
,
Fu
,
H.
,
Huang
,
X.
,
Chava
,
P.
, and
Wang
,
R.
,
2014
, “
Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin
,”
Science
,
344
(
6179
), pp.
70
74
.
34.
Zhang
,
Y.
,
Fu
,
H.
,
Xu
,
S.
,
Fan
,
J. A.
,
Hwang
,
K.-C.
,
Jiang
,
J.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2014
, “
A Hierarchical Computational Model for Stretchable Interconnects With Fractal-Inspired Designs
,”
J. Mech. Phys. Solids
,
72
, pp.
115
130
.
35.
Clausen
,
A.
,
Wang
,
F.
,
Jensen
,
J. S.
,
Sigmund
,
O.
, and
Lewis
,
J. A.
,
2015
, “
Topology Optimized Architectures With Programmable Poisson's Ratio Over Large Deformations
,”
Adv. Mater.
,
27
(
37
), pp.
5523
5527
.
36.
Zhang
,
W.
,
Soman
,
P.
,
Meggs
,
K.
,
Qu
,
X.
, and
Chen
,
S.
,
2013
, “
Tuning the Poisson's Ratio of Biomaterials for Investigating Cellular Response
,”
Adv. Funct. Mater.
,
23
(
25
), pp.
3226
3232
.
37.
Onck
,
P.
,
Koeman
,
T.
,
Van Dillen
,
T.
, and
van der Giessen
,
E.
,
2005
, “
Alternative Explanation of Stiffening in Cross-Linked Semiflexible Networks
,”
Phys. Rev. Lett.
,
95
(
17
), p.
178102
.
38.
Yu
,
K.
,
Shi
,
Q.
,
Li
,
H.
,
Jabour
,
J.
,
Yang
,
H.
,
Dunn
,
M. L.
,
Wang
,
T.
, and
Qi
,
H. J.
,
2016
, “
Interfacial Welding of Dynamic Covalent Network Polymers
,”
J. Mech. Phys. Solids
,
94
, pp.
1
17
.
39.
Chen
,
Y.
,
Jia
,
Z.
, and
Wang
,
L.
,
2016
, “
Hierarchical Honeycomb Lattice Metamaterials With Improved Thermal Resistance and Mechanical Properties
,”
Compos. Struct.
,
152
, pp.
395
402
.
40.
Yeo
,
W. H.
,
Kim
,
Y. S.
,
Lee
,
J.
,
Ameen
,
A.
,
Shi
,
L.
,
Li
,
M.
,
Wang
,
S.
,
Ma
,
R.
,
Jin
,
S. H.
, and
Kang
,
Z.
,
2013
, “
Multifunctional Epidermal Electronics Printed Directly Onto the Skin
,”
Adv. Mater.
,
25
(
20
), pp.
2773
2778
.
41.
Han
,
S.
,
Kim
,
M. K.
,
Wang
,
B.
,
Wie
,
D. S.
,
Wang
,
S.
, and
Lee
,
C. H.
,
2016
, “
Mechanically Reinforced Skin‐Electronics With Networked Nanocomposite Elastomer
,”
Adv. Mater.
,
28
(
46
), pp.
10257
10265
.
42.
Kothari
,
K.
,
Hu
,
Y.
,
Gupta
,
S.
, and
Elbanna
,
A.
,
2018
, “
Mechanical Response of Two-Dimensional Polymer Networks: Role of Topology, Rate Dependence, and Damage Accumulation
,”
ASME. J. Appl. Mech.
,
85
(
3
), p.
031008
.
43.
Zhang
,
M.
,
Liu
,
H.
,
Cao
,
P.
,
Chen
,
B.
,
Hu
,
J.
,
Chen
,
Y.
,
Pan
,
B.
,
Fan
,
J. A.
,
Li
,
R.
,
Zhang
,
L.
, and
Su
,
Y.
,
2017
, “
Strain-Limiting Substrates Based on Nonbuckling, Prestrain-Free Mechanics for Robust Stretchable Electronics
,”
ASME. J. Appl. Mech.
,
84
(
12
), p.
121010
.
44.
Licup
,
A. J.
,
Münster
,
S.
,
Sharma
,
A.
,
Sheinman
,
M.
,
Jawerth
,
L. M.
,
Fabry
,
B.
,
Weitz
,
D. A.
, and
MacKintosh
,
F. C.
,
2015
, “
Stress Controls the Mechanics of Collagen Networks
,”
Proc. Natl. Acad. Sci. U.S.A
,
112
(
31
), pp.
9573
9578
.
45.
Hong
,
Y.
,
Huber
,
A.
,
Takanari
,
K.
,
Amoroso
,
N. J.
,
Hashizume
,
R.
,
Badylak
,
S. F.
, and
Wagner
,
W. R.
,
2011
, “
Mechanical Properties and In Vivo Behavior of a Biodegradable Synthetic Polymer Microfiber–Extracellular Matrix Hydrogel Biohybrid Scaffold
,”
Biomaterials
,
32
(
13
), pp.
3387
3394
.
46.
Wang
,
C.
,
Gao
,
E.
,
Wang
,
L.
, and
Xu
,
Z.
,
2014
, “
Mechanics of Network Materials With Responsive Crosslinks
,”
C. R. Méc.
,
342
(
5
), pp.
264
272
.
47.
Chen
,
C.
,
Lu
,
T.
, and
Fleck
,
N.
,
1999
, “
Effect of Imperfections on the Yielding of Two-Dimensional Foams
,”
J. Mech. Phys. Solids
,
47
(
11
), pp.
2235
2272
.
48.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M.
, and
Wadley
,
H.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
.
49.
Arslan
,
M.
, and
Boyce
,
M.
,
2006
, “
Constitutive Modeling of the Finite Deformation Behavior of Membranes Possessing a Triangulated Network Microstructure
,”
ASME J. Appl. Mech.
,
73
(
4
), pp.
536
543
.
50.
Fleck
,
N. A.
, and
Qiu
,
X.
,
2007
, “
The Damage Tolerance of Elastic–Brittle, Two-Dimensional Isotropic Lattices
,”
J. Mech. Phys. Solids
,
55
(
3
), pp.
562
588
.
51.
Zhang
,
Y.
,
Qiu
,
X.
, and
Fang
,
D.
,
2008
, “
Mechanical Properties of Two Novel Planar Lattice Structures
,”
Int. J. Solids Struct.
,
45
(
13
), pp.
3751
3768
.
52.
Fleck
,
N.
,
Deshpande
,
V.
, and
Ashby
,
M.
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. London, Ser. A
,
466
(2121), pp.
2495
2516
.
53.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.
54.
Meza
,
L. R.
,
Zelhofer
,
A. J.
,
Clarke
,
N.
,
Mateos
,
A. J.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2015
, “
Resilient 3D Hierarchical Architected Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
37
), pp.
11502
11507
.
55.
Wang
,
Q.
,
Jackson
,
J. A.
,
Ge
,
Q.
,
Hopkins
,
J. B.
,
Spadaccini
,
C. M.
, and
Fang
,
N. X.
,
2016
, “
Lightweight Mechanical Metamaterials With Tunable Negative Thermal Expansion
,”
Phy. Rev. Lett.
,
117
(
17
), p.
175901
.
56.
Chen
,
Y.
,
Qian
,
F.
,
Zuo
,
L.
,
Scarpa
,
F.
, and
Wang
,
L.
,
2017
, “
Broadband and Multiband Vibration Mitigation in Lattice Metamaterials With Sinusoidally-Shaped Ligaments
,”
Extreme Mech. Lett.
,
17
, pp.
24
32
.
57.
Li
,
H.
,
Ma
,
Y.
,
Wen
,
W.
,
Wu
,
W.
,
Lei
,
H.
, and
Fang
,
D.
,
2017
, “
In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081006
.
58.
Yang
,
S.
,
Qiao
,
S.
, and
Lu
,
N.
,
2017
, “
Elasticity Solutions to Nonbuckling Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021004
.
59.
Su
,
Y.
,
Wang
,
S.
,
Huang
,
Y.
,
Luan
,
H.
,
Dong
,
W.
,
Fan
,
J. A.
,
Yang
,
Q.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2015
, “
Elasticity of Fractal Inspired Interconnects
,”
Small
,
11
(
3
), pp.
367
373
.
You do not currently have access to this content.