Dielectric elastomer actuators (DEAs) exhibit interesting muscle-like attributes including large voltage-induced deformation and high energy density, thus can function as artificial muscles for soft robots/devices. This paper focuses on soft planar DEAs, which have extensive applications such as artificial muscles for jaw movement, stretchers for cell mechanotransduction, and vibration shakers for tactile feedback, etc. Specifically, we develop a soft planar DEA, in which compression springs are employed to make the entire structure freestanding. This soft freestanding actuator can achieve both linear actuation and turning without increasing the size, weight, or structural complexity, which makes the actuator suitable for driving a soft crawling robot. Furthermore, its simple structure and homogeneous deformation allow for analytic modeling, which can be used to interpret the large voltage-induced deformation and interesting mechanics phenomenon (i.e., wrinkling and electromechanical instability). A preliminary demonstration showcases that this soft planar actuator can be employed as an artificial muscle to drive a soft crawling robot.

References

References
1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
2.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
,
Wang
,
M.
, and
Whitesides
,
G. M.
,
2011
, “
Multigait Soft Robot
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
51
), pp.
20400
20403
.
3.
Morin
,
S. A.
,
Shepherd
,
R. F.
,
Kwok
,
S. W.
,
Stokes
,
A. A.
,
Nemiroski
,
A.
, and
Whitesides
,
G. M.
,
2012
, “
Camouflage and Display for Soft Machines
,”
Science
,
337
(
6096
), pp.
828
832
.
4.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
5.
Ashley
,
S.
,
2003
, “
Artificial Muscles
,”
Sci. Am.
,
289
(
4
), pp.
52
59
.
6.
Carpi
,
F.
,
Bauer
,
S.
, and
De Rossi
,
D.
,
2010
, “
Stretching Dielectric Elastomer Performance
,”
Science
,
330
(
6012
), pp.
1759
1761
.
7.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and
Debotton
,
G.
,
2012
, “
Snap-Through Actuation of Thick-Wall Electroactive Balloons
,”
Int. J. Non. Linear. Mech.
,
47
(
2
), pp.
206
209
.
8.
Godaba
,
H.
,
Li
,
J.
,
Wang
,
Y.
, and
Zhu
,
J.
,
2016
, “
A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
624
631
.
9.
Wang
,
Y.
, and
Zhu
,
J.
,
2016
, “
Artificial Muscles for Jaw Movements
,”
Extreme Mech. Lett.
,
6
, pp.
88
95
.
10.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(
2
), pp.
231
238
.
11.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
12.
Anderson
,
I. A.
,
Gisby
,
T. A.
,
McKay
,
T. G.
,
O'Brien
,
B. M.
, and
Calius
,
E. P.
,
2012
, “
Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines
,”
J. Appl. Phys.
,
112
(
4
), p.
41101
.
13.
O'Halloran
,
A.
,
O'malley
,
F.
, and
McHugh
,
P.
,
2008
, “
A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges
,”
J. Appl. Phys.
,
104
(
7
), p.
71101
.
14.
Goulbourne
,
N.
,
Mockensturm
,
E.
, and
Frecker
,
M.
,
2005
, “
A Nonlinear Model for Dielectric Elastomer Membranes
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
899
906
.
15.
Pei
,
Q.
,
Rosenthal
,
M. A.
,
Pelrine
,
R.
,
Stanford
,
S.
, and
Kornbluh
,
R. D.
,
2003
, “
Multifunctional Electroelastomer Roll Actuators and Their Application for Biomimetic Walking Robots
,”
SPIE Smart Struct. Mater.
,
5051
, pp.
281
290
.
16.
Wang
,
H.
,
Li
,
L.
,
Zhu
,
Y.
, and
Yang
,
W.
,
2016
, “
Analysis and Application of a Rolled Dielectric Elastomer Actuator With Two Degrees of Freedom
,”
Smart Mater. Struct.
,
25
(
12
), p.
125008
.
17.
Poulin
,
A.
,
Saygili Demir
,
C.
,
Rosset
,
S.
,
Petrova
,
T.
, and
Shea
,
H. R.
,
2016
, “
Dielectric Elastomer Actuator for Mechanical Loading of 2D Cell Cultures
,”
Lab Chip
,
16
(
19
), pp.
3788
3794
.
18.
Gupta
,
U.
,
Godaba
,
H.
,
Zhao
,
Z.
,
Chui
,
C. K.
, and
Zhu
,
J.
,
2015
, “
Tunable Force/Displacement of a Vibration Shaker Driven by a Dielectric Elastomer Actuator
,”
Extreme Mech. Lett.
,
2
, pp.
72
77
.
19.
Ave
,
N. M.
,
2010
, “
Artificial Muscle Actuators for Haptic Displays: System Design to Match the Dynamics and Tactile Sensitivity of the Human Fingerpad
,”
Electroact. Polym. Actuators Devices
,
7642
, p. 76420I.
20.
Chouinard
,
P.
, and
Plante
,
J. S.
,
2012
, “
Bistable Antagonistic Dielectric Elastomer Actuators for Binary Robotics and Mechatronics
,”
IEEE/ASME Trans. Mechatronics
,
17
(
5
), pp.
857
865
.
21.
Kollosche
,
M.
,
Zhu
,
J.
,
Suo
,
Z.
, and
Kofod
,
G.
,
2012
, “
Complex Interplay of Nonlinear Processes in Dielectric Elastomers
,”
Phys. Rev. E
,
85
(
5
), p.
51801
.
22.
Lu
,
T.
,
Shi
,
Z.
,
Shi
,
Q.
, and
Wang
,
T. J.
,
2016
, “
Bioinspired Bicipital Muscle With Fiber-Constrained Dielectric Elastomer Actuator
,”
Extreme Mech. Lett.
,
6
, pp.
75
81
.
23.
Plante
,
J. S.
, and
Dubowsky
,
S.
,
2007
, “
On the Performance Mechanisms of Dielectric Elastomer Actuators
,”
Sens. Actuators, A Phys.
,
137
(
1
), pp.
96
109
.
24.
Kollosche
,
M.
,
Kofod
,
G.
,
Suo
,
Z.
, and
Zhu
,
J.
,
2015
, “
Temporal Evolution and Instability in a Viscoelastic Dielectric Elastomer
,”
J. Mech. Phys. Solids
,
76
, pp.
47
64
.
25.
Koh
,
S. J. A.
,
Li
,
T.
,
Zhou
,
J.
,
Zhao
,
X.
,
Hong
,
W.
,
Zhu
,
J.
, and
Suo
,
Z.
,
2011
, “
Mechanisms of Large Actuation Strain in Dielectric Elastomers
,”
J. Polym. Sci., Part B: Polym. Phys.
,
49
(
7
), pp.
504
515
.
26.
Gu
,
G.-Y.
,
Gupta
,
U.
,
Zhu
,
J.
,
Zhu
,
L.-M.
, and
Zhu
,
X.
,
2017
, “
Modeling of Viscoelastic Electromechanical Behavior in a Soft Dielectric Elastomer Actuator
,”
IEEE Trans. Rob.
,
33
(5), pp. 1263–1271.
27.
Gu
,
G.-Y.
,
Gupta
,
U.
,
Zhu
,
J.
,
Zhu
,
L.-M.
, and
Zhu
,
X.-Y.
,
2015
, “
Feedforward Deformation Control of a Dielectric Elastomer Actuator Based on a Nonlinear Dynamic Model
,”
Appl. Phys. Lett.
,
107
(
4
), p.
42907
.
28.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
29.
Zhao
,
X.
,
Hong
,
W.
, and
Suo
,
Z.
,
2007
, “
Electromechanical Hysteresis and Coexistent States in Dielectric Elastomers
,”
Phys. Rev. B
,
76
(
13
), p.
134113
.
30.
Kofod
,
G.
,
Sommer-Larsen
,
P.
,
Kornbluh
,
R.
, and
Pelrine
,
R.
,
2003
, “
Actuation Response of Polyacrylate Dielectric Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
14
(
12
), pp.
787
793
.
31.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
32.
Zhu
,
J.
,
Kollosche
,
M.
,
Lu
,
T.
,
Kofod
,
G.
, and
Suo
,
Z.
,
2012
, “
Two Types of Transitions to Wrinkles in Dielectric Elastomers
,”
Soft Matter
,
8
(
34
), pp.
8840
8846
.
33.
Zhao
,
X.
, and
Suo
,
Z.
,
2007
, “
Method to Analyze Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
91
(
6
), p.
61921
.
34.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
35.
Rudykh
,
S.
, and
Boyce
,
M. C.
,
2014
, “
Transforming Wave Propagation in Layered Media Via Instability-Induced Interfacial Wrinkling
,”
Phys. Rev. Lett.
,
112
(
3
), p.
34301
.
36.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7727
7751
.
37.
Madden
,
J. D. W.
,
Vandesteeg
,
N. A.
,
Anquetil
,
P. A.
,
Madden
,
P. G. A.
,
Takshi
,
A.
,
Pytel
,
R. Z.
,
Lafontaine
,
S. R.
,
Wieringa
,
P. A.
, and
Hunter
,
I. W.
,
2004
, “
Artificial Muscle Technology: Physical Principles and Naval Prospects
,”
Ocean. Eng. IEEE J.
,
29
(
3
), pp.
706
728
.
38.
Umedachi
,
T.
,
Vikas
,
V.
, and
Trimmer
,
B. A.
,
2016
, “
Softworms: The Design and Control of Non-Pneumatic, 3D-Printed, Deformable Robots
,”
Bioinspir. Biomim.
,
11
(
2
), p.
25001
.
39.
Koh
,
J. S.
, and
Cho
,
K. J.
,
2009
, “
Omegabot: Biomimetic Inchworm Robot Using SMA Coil Actuator and Smart Composite Microstructures (SCM)
,”
IEEE International Conference Robotics and Biomimetics
(
ROBIO
2009), Guilin, China, Dec. 19–23, pp.
1154
1159
.
40.
Wang
,
W.
,
Lee
,
J.-Y.
,
Rodrigue
,
H.
,
Song
,
S.-H.
,
Chu
,
W.-S.
, and
Ahn
,
S.-H.
,
2014
, “
Locomotion of Inchworm-Inspired Robot Made of Smart Soft Composite (SSC)
,”
Bioinspir. Biomim.
,
9
(
4
), p.
46006
.
41.
Must
,
I.
,
Kaasik
,
F.
,
Põldsalu
,
I.
,
Mihkels
,
L.
,
Johanson
,
U.
,
Punning
,
A.
, and
Aabloo
,
A.
,
2015
, “
Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics
,”
Adv. Eng. Mater.
,
17
(
1
), pp.
84
94
.
42.
Henke
,
E.-F. M.
,
Schlatter
,
S.
, and
Anderson
,
I. A.
,
2016
, “A Soft Electronics-Free Robot,” eprint:
arXiv1603.05599
.
43.
Gisby
,
T. A.
,
O'Brien
,
B. M.
, and
Anderson
,
I. A.
,
2013
, “
Self Sensing Feedback for Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
102
(
19
), p.
193703
.
44.
Rizzello
,
G.
,
Naso
,
D.
,
York
,
A.
, and
Seelecke
,
S.
,
2016
, “
A Self-Sensing Approach for Dielectric Elastomer Actuators Based on Online Estimation Algorithms
,”
IEEE/ASME Trans. Mechatronics
,
22
(
2
), pp. 728–738.
45.
Rizzello
,
G.
,
Naso
,
D.
,
York
,
A.
, and
Seelecke
,
S.
,
2016
, “
Closed Loop Control of Dielectric Elastomer Actuators Based on Self-Sensing Displacement Feedback
,”
Smart Mater. Struct.
,
25
(
3
), p.
35034
.
You do not currently have access to this content.