This paper investigates the tip region of a hydraulic fracture propagating near a free-surface via the related problem of the steady fluid-driven peeling of a thin elastic layer from a rigid substrate. The solution of this problem requires accounting for the existence of a fluid lag, as the pressure singularity that would otherwise exist at the crack tip is incompatible with the underlying linear beam theory governing the deflection of the thin layer. These considerations lead to the formulation of a nonlinear traveling wave problem with a free boundary, which is solved numerically. The scaled solution depends only on one number K, which has the meaning of a dimensionless toughness. The asymptotic viscosity- and toughness-dominated regimes, respectively, corresponding to small and large K, represent the end members of a family of solutions. It is shown that the far-field curvature can be interpreted as an apparent toughness, which is a universal function of K. In the viscosity regime, the apparent toughness does not depend on K, while in the toughness regime, it is equal to K. By noting that the apparent toughness represents an intermediate asymptote for the layer curvature under certain conditions, the obtention of time-dependent solutions for propagating near-surface hydraulic fractures can be greatly simplified. Indeed, any such solutions can be constructed by a matched asymptotics approach, with the outer solution corresponding to a uniformly pressurized fracture and the inner solution to the tip solution derived in this paper.

References

1.
Young
,
C.
,
1999
, “
Controlled-Foam Injection for Hard Rock Excavation
,”
37th U.S. Rock Mechanics Symposium Rock Mechanics for Industry
(
USRMS
), Vail, CO, June 7–9, pp.
115
122
.https://www.onepetro.org/conference-paper/ARMA-99-0115
2.
Jeffrey
,
R. G.
, and
Mills
,
K. W.
,
2000
, “Hydraulic Fracturing Applied to Inducing Longwall Coal Mine Goaf Falls,”
4th North American Rock Mechanics Symposium
, July 31–Aug. 3, Seattle, WA, pp.
423
430
.https://www.onepetro.org/conference-paper/ARMA-2000-0423
3.
Murdoch
,
L. C.
,
2002
, “
Mechanical Analysis of Idealized Shallow Hydraulic Fracture
,”
J. Geotech. Geoenviron.
,
128
(
6
), pp.
488
495
.
4.
Bunger
,
A. P.
, and
Cruden
,
A. R.
,
2011
, “
Modeling the Growth of Laccoliths and Large Mafic Sills: Role of Magma Body Forces
,”
J. Geophys. Res.: Solid Earth
,
116
(
B2
), p. B02203.
5.
Michaut
,
C.
,
2011
, “
Dynamics of Magmatic Intrusions in the Upper Crust: Theory and Applications to Laccoliths on Earth and the Moon
,”
J. Geophys. Res.: Solid Earth
,
116
(
B5
), p. B05205.
6.
Tayler
,
A. B.
, and
King
,
J. R.
,
1987
, “
Free Boundaries in Semi-Conductor Fabrication
,”
Free Boundary Problems: Theory and Applications
(Pitman Research Notes in Mathematics, Vol. 1), Longman Scientific & Technical, Harlow, UK, pp.
243
259
.
7.
Hosoi
,
A. E.
, and
Mahadevan
,
L.
,
2004
, “
Peeling, Healing, and Bursting in a Lubricated Elastic Sheet
,”
Phys. Rev. Lett.
,
93
(
13
), p.
137802
.
8.
Lister
,
J. R.
,
Peng
,
G. G.
, and
Neufeld
,
J. A.
,
2013
, “
Viscous Control of Peeling an Elastic Sheet by Bending and Pulling
,”
Phys. Rev. Lett.
,
111
(
15
), p.
154501
.
9.
Zhang
,
X.
,
Detournay
,
E.
, and
Jeffrey
,
R. G.
,
2002
, “
Propagation of a Penny-Shaped Hydraulic Fracture Parallel to the Free-Surface of an Elastic Half-Space
,”
Int. J. Fract.
,
115
(2), pp.
125
158
.
10.
Zhang
,
X.
,
Jeffrey
,
R. G.
, and
Detournay
,
E.
,
2005
, “
Propagation of a Hydraulic Fracture Parallel to a Free Surface
,”
Int. J. Numer. Anal. Methods Geomech.
,
29
(
13
), pp.
1317
1340
.
11.
Gordeliy
,
E.
, and
Detournay
,
E.
,
2011
, “
A Fixed Grid Algorithm for Simulating the Propagation of a Shallow Hydraulic Fracture With a Fluid Lag
,”
Int. J. Numer. Anal. Methods Geomech.
,
35
(
5
), pp.
602
629
.
12.
Bunger
,
A. P.
, and
Detournay
,
E.
,
2005
, “
Asymptotic Solution for a Penny-Shaped Near-Surface Hydraulic Fracture
,”
Eng. Fract. Mech.
,
72
(
16
), pp.
2468
2486
.
13.
Hewitt
,
I. J.
,
Balmforth
,
N. J.
, and
De Bruyn
,
J. R.
,
2015
, “
Elastic-Plated Gravity Currents
,”
Eur. J. Appl. Math.
,
26
(
1
), pp.
1
31
.
14.
Flitton
,
J. C.
, and
King
,
J. R.
,
2004
, “
Moving-Boundary and Fixed-Domain Problems for a Sixth-Order Thin-Film Equation
,”
Eur. J. Appl. Math.
,
15
(
6
), pp.
713
754
.
15.
Lister
,
J. R.
,
1990
, “
Buoyancy-Driven Fluid Fracture: The Effects of Material Toughness and of Low-Viscosity Precursors
,”
J. Fluid Mech.
,
210
, pp.
263
280
.
16.
Desroches
,
J.
,
Detournay
,
E.
,
Lenoach
,
B.
,
Papanastasiou
,
P.
,
Pearson
,
J. R. A.
,
Thiercelin
,
M.
, and
Cheng
,
A. H.-D.
,
1994
, “
The Crack Tip Region in Hydraulic Fracturing
,”
Proc. R. Soc. London, Ser. A
,
447
(
1929
), pp.
39
48
.
17.
Garagash
,
D. I.
, and
Detournay
,
E.
,
2000
, “
The Tip Region of a Fluid-Driven Fracture in an Elastic Medium
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
183
192
.
18.
Garagash
,
D. I.
,
Detournay
,
E.
, and
Adachi
,
J. I.
,
2011
, “
Multiscale Tip Asymptotics in Hydraulic Fracture With Leak-Off
,”
J. Fluid Mech.
,
669
, pp.
260
297
.
19.
Dontsov
,
E. V.
, and
Peirce
,
A. P.
,
2015
, “
A Non-Singular Integral Equation Formulation to Analyse Multiscale Behaviour in Semi-Infinite Hydraulic Fractures
,”
J. Fluid Mech.
,
781
, p. R1.
20.
Lecampion
,
B.
, and
Detournay
,
E.
,
2007
, “
An Implicit Algorithm for the Propagation of a Hydraulic Fracture With a Fluid Lag
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
49–52
), pp.
4863
4880
.
21.
Detournay
,
E.
, and
Peirce
,
A. P.
,
2014
, “
On the Moving Boundary Conditions for a Hydraulic Fracture
,”
Int. J. Eng. Sci.
,
84
, pp.
147
155
.
22.
Detournay
,
E.
,
2016
, “
Mechanics of Hydraulic Fractures
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
311
339
.
23.
Timoshenko
,
S.
,
1958
,
Strength of Materials. Part1: Elementary Theory and Problems
, 3rd ed.,
Van Nostrand Reinhold
,
New York
.
24.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge UK
.
25.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
26.
Li
,
S.
,
Wang
,
J.
, and
Thouless
,
M. D.
,
2004
, “
The Effects of Shear on Delamination in Layered Materials
,”
J. Mech. Phys. Solids
,
52
(
1
), pp.
193
214
.
27.
Seifert
,
U.
,
1991
, “
Adhesion of Vesicles in Two Dimensions
,”
Phys. Rev. A
,
43
(
12
), p.
6803
.
28.
Majidi
,
C.
, and
Adams
,
G. G.
,
2009
, “
A Simplified Formulation of Adhesion Problems With Elastic Plates
,”
Proc. R. Soc. London, Ser. A
,
465
(
2107
), pp.
2217
2230
.
29.
Majidi
,
C.
,
O'Reilly
,
O. M.
, and
Williams
,
J. A.
,
2012
, “
On the Stability of a Rod Adhering to a Rigid Surface: Shear-Induced Stable Adhesion and the Instability of Peeling
,”
J. Mech. Phys. Solids
,
60
(
5
), pp.
827
843
.
30.
Dyskin
,
A. V.
,
Germanovich
,
L. N.
, and
Ustinov
,
K. B.
,
2000
, “
Asymptotic Analysis of Crack Interaction With Free Boundary
,”
Int. J. Solids Struct.
,
37
(
6
), pp.
857
886
.
31.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
You do not currently have access to this content.