This paper studies a new comprehensive model for toppling dynamics of regularly spaced dominoes in an array. The model has unlocked the hypotheses introduced by Stronge and Shu (Stronge, W. J., and Shu, D., 1988, “The Domino Effect: Successive Destabilization by Cooperative Neighbours,” Proc. R. Soc. A, 418(1854), pp. 155–163), which can provide us some essential insights into the mechanism of domino wave. Extensive comparisons are made between the proposed model and the experimental results studied in the existing literature. Our numerical studies show that the existing theoretical models are special cases of the proposed model, and the fluctuation in the waveform of propagation speed observed from experiments was caused by the irregular multiple impacts between colliding dominoes. The influence of physical parameters of domino on the natural speed of toppling dominoes is also considered, and it is found that the coefficients of friction and restitution between colliding dominoes have more effects due to the energy dissipation during impact.

References

References
1.
Olson
,
E. L.
, and
Allen
,
R. M.
,
2005
, “
The Deterministic Nature of Earthquake Rupture
,”
Nature
,
438
(
7065
), pp.
212
215
.
2.
Yuan
,
R. M.
,
Xu
,
X. W.
,
Chen
,
G. H.
,
Tan
,
X. B.
,
Klinger
,
Y.
, and
Xing
,
H. L.
,
2010
, “
Ejection Landslide at Northern Terminus of Beichuan Rupture Triggered by the 2008 Mw 7.9 Wenchuan Earthquake
,”
Bull. Seismol. Soc. Am.
,
100
(
5B
), pp.
2689
2699
.
3.
Gonze
,
D.
, and
Goldbeter
,
A.
,
2001
, “
A Model for a Network of Phosphorylation–Dephosphorylation Cycles Displaying the Dynamics of Dominoes and Clocks
,”
J. Theor. Biol.
,
210
(
2
), pp.
167
186
.
4.
Stevens
,
W. M.
,
2012
, “
Computing With Planar Toppling Domino Arrangements
,”
Nat. Comput.
,
11
(
4
), pp.
665
672
.
5.
Chang
,
T.
, and
Guo
,
Z.
,
2010
, “
Temperature-Induced Reversible Dominoes in Carbon Nanotubes
,”
Nano Lett.
,
10
(
9
), pp.
3490
3493
.
6.
Abdolhamidzadeh
,
B.
,
Abbasi
,
T.
,
Rashtchian
,
D.
, and
Abbasi
,
S. A.
,
2011
, “
Domino Effect in Process-Industry Accidents–An Inventory of Past Events and Identification of Some Patterns
,”
J. Loss Prev. Process Ind.
,
24
(
5
), pp.
575
593
.
7.
Nakabayashi
,
S.
,
Sugiyama
,
N.
,
Yagi
,
I.
, and
Uosaki
,
K.
,
1996
, “
Dissociative Adsorption Dynamics of Formaldehyde on a Platinum Electrode Surface; One-Dimensional Domino?
,”
Chem. Phys.
,
205
(
1–2
), pp.
269
275
.
8.
Daykin
,
D.
,
1971
, “
Falling Dominoes
,”
SIAM Rev.
,
13
(
4
), p.
569
.
9.
Maddox
,
J.
,
1987
, “
The Domino Effect Explained
,”
Nature
,
325
(
6101
), p.
191
.
10.
Wagon
,
S.
,
Pontarelli
,
A.
,
Briggs
,
W.
, and
Becker
,
S.
,
2005
, “
The Dynamics of Falling Dominoes
,”
UMAP J.
,
26
(
1
), pp.
35
47
.
11.
Van Leeuwen
,
J. M. J.
,
2010
, “
The Domino Effect
,”
Am. J. Phys.
,
78
(
7
), pp.
721
727
.
12.
Lu
,
G.
,
Third
,
J. R.
, and
Müller
,
C. R.
,
2014
, “
Effect of Particle Shape on Domino Wave Propagation: A Perspective From 3D, Anisotropic Discrete Element Simulations
,”
Granular Matter
,
16
(
1
), pp.
107
114
.
13.
Stronge
,
W. J.
, and
Shu
,
D.
,
1988
, “
The Domino Effect: Successive Destabilization by Cooperative Neighbours
,”
Proc. R. Soc. A
,
418
(
1854
), pp.
155
163
.
14.
McLachlan
,
B.
,
Beaupre
,
G.
,
Cox
,
A.
, and
Gore
,
L.
,
1983
, “
Falling Dominoes (De Daykin)
,”
SIAM Rev.
,
25
(
3
), p.
403
.
15.
Bert
,
C. W.
,
1986
, “
Falling Dominoes
,”
SIAM Rev.
,
28
(
2
), pp.
219
224
.
16.
Efthimiou
,
C. J.
, and
Johnson
,
M. D.
,
2007
, “
Domino Waves
,”
SIAM Rev.
,
49
(
1
), pp.
111
120
.
17.
Stronge
,
W. J.
,
1987
, “
The Domino Effect: A Wave of Destabilizing Collisions in a Periodic Array
,”
Proc. R. Soc. A
,
409
(
1836
), pp.
199
208
.
18.
Larham
,
R.
,
2008
, “
Validation of a Model of the Domino Effect?
,” preprint
arXiv:0803.2898
.
19.
Shaw
,
D.
,
1978
, “
Mechanics of a Chain of Dominoes
,”
Am. J. Phys.
,
46
(
6
), pp.
640
642
.
20.
Fujii
,
F.
,
Inoue
,
Y.
, and
Nitta
,
T.
,
2012
, “
Modeling the Domino Wave Propagation in Contact Mechanics
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
78
(
788
), pp.
1133
1142
.
21.
Liu
,
C.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2008
, “
Frictionless Multiple Impacts in Multibody Systems—Part I: Theoretical Framework
,”
Proc. R. Soc. London A
,
464
(
2100
), pp.
3193
3211
.
22.
Liu
,
C.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2009
, “
Frictionless Multiple Impacts in Multibody Systems—Part II: Numerical Algorithm and Simulation Results
,”
Proc. R. Soc. London A
,
465
(
2101
), pp.
1
23
.
23.
Zhao
,
Z.
, and
Liu
,
C.
,
2016
, “
Contact Constraints and Dynamical Equations in Lagrangian Systems
,”
Multibody Syst. Dyn.
,
38
(
1
), pp.
77
99
.
24.
Wang
,
J.
,
Liu
,
C.
, and
Zhao
,
Z.
,
2014
, “
Nonsmooth Dynamics of a 3D Rigid Body on a Vibrating Plate
,”
Multibody Syst. Dyn.
,
32
(
2
), pp.
217
239
.
25.
Liu
,
C.
,
Zhang
,
H.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2013
, “
Impact–Contact Dynamics in a Disc–Ball System
,”
Proc. R. Soc. A
,
469
(
2152
), p.
20120741
.
26.
Brogliato
,
B.
,
1999
,
Nonsmooth Mechanics
,
Springer
, London.
27.
Jean
,
M.
,
1995
, “
Frictional Contact in Collections of Rigid or Deformable Bodies: Numerical Simulation of Geomaterial Motions
,”
Stud. Appl. Mech.
,
42
, pp.
463
486
.
28.
Lun
,
C.
, and
Bent
,
A.
,
1993
, “
Computer Simulation of Simple Shear Flow of Inelastic, Frictional Spheres
,” Second International Conference on Micromechanics of Granular Media (Powders & Grains 93), Birmingham, UK, July 12–16, pp.
301
306
.
29.
Brogliato
,
B.
,
Zhang
,
H.
, and
Liu
,
C.
,
2012
, “
Analysis of a Generalized Kinematic Impact Law for Multibody-Multicontact Systems, With Application to the Planar Rocking Block and Chains of Balls
,”
Multibody Syst. Dyn.
,
27
(
3
), pp.
351
382
.
You do not currently have access to this content.