Coefficients of restitution (CoR) is used to scale the kinetic energy dissipation, which is a necessary parameter for discrete element modeling simulations of granular flow. Differences from the collision of spherical particles, CoRs of spheroid particle are affected not only by materials, particle size, and impacting velocity, but also by the contact inclination angle of the particle. This article presents our experimental investigation to measure the velocities of translation and rotation using high-speed camera and calculate the CoR in normal direction of prolate spheroid particles impacting flat targets. The results show that this CoR of a prolate spheroid particle is composed of two parts, translation and rotation. The effect from the contact inclination angle is not obvious for a given velocity. When the contact point is close to a pole, the first part plays a major role. On the contrary, the second part dominates the CoR, when the contact point is close to the equator. A dimensionless number, e*, is defined to scale the proportion of velocity due to rotation in the total rebound velocity at the contact point. The relationship between the contact inclination angle, ϕ, and e* for 25 deg < ϕ < 90 deg is given in this article.

References

References
1.
Džiugys
,
A.
, and
Peters
,
B.
,
2001
, “
An Approach to Simulate the Motion of Spherical and Non-Spherical Fuel Particles in Combustion Chambers
,”
Granular Matter
,
3
(4), pp.
231
265
.
2.
Parram
,
J. W.
,
Wertheim
,
M. S.
,
Lebowirz
,
J. L.
, and
Williams
,
G. O.
,
1984
, “
Monte Carlo Simulations of Hard Spheroids
,”
Chem. Phys. Lett.
,
105
(3), pp.
277
280
.
3.
Hogue
,
C.
, and
Newland
,
D.
,
1994
, “
Efficient Computer Simulation of Moving Granular Particles
,”
Power Technol.
,
78
(1), pp.
51
66
.
4.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(1), pp. 47–65.
5.
Ramirez
,
R.
,
Pøschel
,
T.
,
Brilliantov
,
N. V.
, and
Schwager
,
T.
,
1999
, “
Coefficient of Restitution of Colliding Viscoelastic Spheres
,”
Phys. Rev. E
,
60
(4), p.
4465
.
6.
Hertzsch
,
J.-M.
,
Spahn
,
F.
, and
Brilliantov
,
N. V.
,
1995
, “
On Low-Velocity Collisions of Viscoelastic Particles
,”
J. Phys. II
,
5
(
11
), pp.
1725
1738
.
7.
Brilliantov
,
N. V.
,
Spahn
,
F.
,
Hertzsch
,
J.-M.
, and
Pöschel
,
T.
,
1996
, “
Model for Collisions in Granular Gases
,”
Phys. Rev. E
,
53
(
5
), p.
5382
.
8.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math.
,
92
, p.
156
.
9.
Johnson
,
K. L.
,
1982
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
10.
Kuwabara
,
G.
, and
Kono
,
K.
,
1987
, “
Restitution Coefficient in a Collision Between Two Spheres
,”
Jpn. J. Appl. Phys.
,
26
, p.
1230
.
11.
Mindlin
,
R. D.
, and
Deresiewica
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
Trans. ASME J. Appl. Mech.
,
20
(
3
), p.
327
.
12.
Lun
,
C. K. K.
, and
Savage
,
S. B.
,
1987
, “
A Simple Kinetic Theory for Granular Flow of Rough, Inelastic, Spherical Particles
,”
ASME J. Appl. Mech.
,
54
(
1
), pp.
47
53
.
13.
Maw
,
N.
,
Barber
,
J.
, and
Fawcett
,
J.
,
1976
, “
The Oblique Impact of Elastic Spheres
,”
Wear
,
38
(
1
), pp.
101
114
.
14.
Maw
,
N.
,
Barber
,
J.
, and
Fawcett
,
J.
,
1977
, “
The Rebound of Elastic Bodies in Oblique Impact
,”
Mech. Res. Commun.
,
4
(
1
), pp.
17
22
.
15.
Goldsmith
,
W.
,
1960
,
The Theory and Physical Behaviour of Colliding Bodies
,
Edward Arnold
,
London
, p.
83
.
16.
Goldsmith
,
W.
, and
Frasier
,
J.
,
1961
, “
Impact: The Theory and Physical Behavior of Colliding Solids
,”
ASME J. Appl. Mech.
,
28
(4), p.
639
.
17.
Bridges
,
F. G.
,
Hatzes
,
A.
, and
Lin
,
D.
,
1984
, “
Structure, Stability and Evolution of Saturn's Rings
,”
Nature
,
309
(
5966
), pp.
333
335
.
18.
McDonald
,
J.
,
Hatzes
,
A.
,
Bridges
,
F.
, and
Lin
,
D.
,
1989
, “
Mass Transfer During Ice Particle Collisions in Planetary Rings
,”
Icarus
,
82
(
1
), pp.
167
179
.
19.
Bridges
,
F. G.
,
Supulver
,
K. D.
,
Lin
,
D.
,
Knight
,
R.
, and
Zafra
,
M.
,
1996
, “
Energy Loss and Sticking Mechanisms in Particle Aggregation in Planetesimal Formation
,”
Icarus
,
123
(
2
), pp.
422
435
.
20.
Schwager
,
T.
, and
Pöschel
,
T.
,
1998
, “
Coefficient of Normal Restitution of Viscous Particles and Cooling Rate of Granular Gases
,”
Phys. Rev. E
,
57
(
1
), p.
650
.
21.
Dong
,
H.
, and
Moys
,
M.
,
2006
, “
Experimental Study of Oblique Impacts With Initial Spin
,”
Powder Technol.
,
161
(
1
), pp. 22–31.
22.
Hughes
,
T. J.
,
Taylor
,
R. L.
,
Sackman
,
J. L.
,
Curnier
,
A.
, and
Kanoknukulchai
,
W.
,
1976
, “
A Finite Element Method for a Class of Contact-Impact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
8
(
3
), pp.
249
276
.
23.
Walton
,
O.
,
Brandeis
,
J.
, and
Cooper
,
J.
,
1984
, “
Modeling of Inelastic, Frictional, Contact Forces in Flowing Granular Assemblies
,”
21st Annual Meeting of the Society of Engineering Science
, Blacksburg, VA, Oct. 15–17, p.
257
.
24.
Wu
,
C.-Y.
,
Li
,
L.-Y.
, and
Thornton
,
C.
,
2005
, “
Energy Dissipation During Normal Impact of Elastic and Elastic–Plastic Spheres
,”
Int. J. Impact Eng.
,
32
(
1
), pp.
593
604
.
25.
Zamankhan
,
P.
, and
Bordbar
,
M. H.
,
2006
, “
Complex Flow Dynamics in Dense Granular Flows—Part I: Experimentation
,”
ASME J. Appl. Mech.
,
73
(
4
), p.
648
.
26.
Zamankhan
,
P.
, and
Huang
,
J.
,
2007
, “
Complex Flow Dynamics in Dense Granular Flows—Part II: Simulations
,”
ASME J. Appl. Mech.
,
74
(
4
), pp. 691–702.
27.
Huang
,
J.
,
2007
,
Analysis of Industrial Granular Flow Applications by Using Advanced Collision Models
,
Lappeenranta University of Technology
,
Lappeenranta, Finland
.
28.
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2016
, “
A Generalized Particle-to-Wall Collision Model for Non-Spherical Rigid Particles
,”
Adv. Powder Technol.
,
27
(
1
), pp.
154
163
.
You do not currently have access to this content.