We present a nondestructive approach to map the heterogeneous viscoelastic moduli from time harmonic motion via a constrained optimization strategy under the framework of finite element techniques. The adjoint equations are carefully derived to determine the gradient of the objective function with respect to the viscoelastic moduli. The feasibility of this inverse scheme is tested with simulated experiments under various driving frequencies. We observe that the overall strategy results in well-reconstructed moduli. For low frequencies, however, the mapped loss modulus is of inferior quality. To explain this observation, we analyze two simple one-dimensional (1D) models theoretically. The analysis reveals that the known displacement amplitude is less sensitive to the loss modulus value at low frequencies. Thus, we conclude that the inverse method is incapable of finding a well-reconstructed loss modulus distribution for low driving frequencies in the presence of noisy data. Overall, the inverse algorithms presented in this work are highly robust to map the storage and loss modulus with high accuracy given that a proper range of frequencies are utilized.

References

References
1.
Goenezen
,
S.
,
Rennie
,
M.
, and
Rugonyi
,
S.
,
2012
, “
Biomechanics of Early Cardiac Development
,”
Biomech. Model. Mechanobiol.
,
11
(
8
), pp.
1187
1204
.
2.
Schmitt
,
J.
,
1998
, “
OCT Elastography: Imaging Microscopic Deformation and Strain of Tissue
,”
Opt. Express
,
3
(
6
), pp.
199
211
.
3.
Rogowska
,
J.
,
Patel
,
N.
,
Plummer
,
S.
, and
Brezinski
,
M. E.
,
2006
, “
Quantitative Optical Coherence Tomographic Elastography: Method for Assessing Arterial Mechanical Properties
,”
Br. J. Radiol.
,
79
(
945
), pp.
707
711
.
4.
Hall
,
T.
,
Barbone
,
P. E.
,
Oberai
,
A. A.
,
Jiang
,
J.
,
Dord
,
J.
,
Goenezen
,
S.
, and
Fisher
,
T.
,
2011
, “
Recent Results in Nonlinear Strain and Modulus Imaging
,”
Curr. Med. Imaging Rev.
,
7
(
4
), pp.
313
327
.
5.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
,
1991
, “
Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging
,
13
(
2
), pp.
111
134
.
6.
Ophir
,
J.
,
Alam
,
S. K.
,
Garra
,
B.
,
Kallel
,
F.
,
Konofagou
,
E.
,
Krouskop
,
T.
, and
Varghese
,
T.
,
1999
, “
Elastography: Ultrasonic Estimation and Imaging of the Elastic Properties of Tissues
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
213
(
3
), pp.
203
33
.
7.
Romano
,
A. J.
,
Bucaro
,
J. A.
,
Houston
,
B. H.
,
Kugel
,
J. L.
,
Rossman
,
P.
,
Grimm
,
R. C.
, and
Ehman
,
R.
,
2004
, “
On the Feasibility of Elastic Wave Visualization Within Polymeric Solids Using Magnetic Resonance Elastography
,”
J. Acoust. Soc. Am.
,
116
(
1
), pp.
125
132
.
8.
Freimann
,
F. B.
,
Muller
,
S.
,
Streitberger
,
K. J.
,
Guo
,
J.
,
Rot
,
S.
,
Ghori
,
A.
,
Vajkoczy
,
P.
,
Reiter
,
R.
,
Sack
,
I.
, and
Braun
,
J.
,
2013
, “
MR Elastography in a Murine Stroke Model Reveals Correlation of Macroscopic Viscoelastic Properties of the Brain With Neuronal Density
,”
NMR Biomed.
,
26
(
11
), pp.
1534
1539
.
9.
Streitberger
,
K. J.
,
Sack
,
I.
,
Krefting
,
D.
,
Pfuller
,
C.
,
Braun
,
J.
,
Paul
,
F.
, and
Wuerfel
,
J.
,
2012
, “
Brain Viscoelasticity Alteration in Chronic-Progressive Multiple Sclerosis
,”
PLoS One
,
7
(
1
), p.
e29888
.
10.
Goenezen
,
S.
,
Dord
,
J. F.
,
Sink
,
Z.
,
Barbone
,
P.
,
Jiang
,
J.
,
Hall
,
T. J.
, and
Oberai
,
A. A.
,
2012
, “
Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis
,”
Med. Imaging, IEEE Trans.
,
31
(
8
), pp.
1628
1637
.
11.
Goenezen
,
S.
,
Barbone
,
P.
, and
Oberai
,
A. A.
,
2011
, “
Solution of the Nonlinear Elasticity Imaging Inverse Problem: The Incompressible Case
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1406
1420
.
12.
Mei
,
Y.
, and
Goenezen
,
S.
,
2015
, “
Spatially Weighted Objective Function to Solve the Inverse Problem in Elasticity for the Elastic Property Distribution
,”
Computational Biomechanics for Medicine: New Approaches and New Applications
,
B. J.
Doyle
,
K.
Miller
,
A.
Wittek
, and
P. M. F.
Nielson
, eds.,
Springer
,
New York
.
13.
Mei
,
Y.
,
Kuznetsov
,
S.
, and
Goenezen
,
S.
,
2015
, “
Reduced Boundary Sensitivity and Improved Contrast of the Regularized Inverse Problem Solution in Elasticity
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
031001
.
14.
Oberai
,
A. A.
,
Gokhale
,
N. H.
, and
Feijóo
,
G. R.
,
2003
, “
Solution of Inverse Problems in Elasticity Imaging Using the Adjoint Method
,”
Inverse Probl.
,
19
(
2
), p.
297
.
15.
Guchhait
,
S.
, and
Banerjee
,
B.
,
2015
, “
Constitutive Error Based Material Parameter Estimation Procedure for Hyperelastic Material
,”
Comput. Methods Appl. Mech. Eng.
,
297
, pp.
455
475
.
16.
Sridhar
,
S. L.
,
Mei
,
Y.
, and
Goenezen
,
S.
,
2017
, “
Improving the Sensitivity to Map Nonlinear Parameters for Hyperelastic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
474
491
.
17.
Mei
,
Y.
,
Fulmer
,
R.
,
Raja
,
V.
,
Wang
,
S.
, and
Goenezen
,
S.
,
2016
, “
Estimating the Non-Homogeneous Elastic Modulus Distribution From Surface Deformations
,”
Int. J. Solids Struct.
,
83
, pp.
73
80
.
18.
Mei
,
Y.
, and
Goenezen
,
S.
, 2016, “
Non-Destructive Characterization of Heterogeneous Solids From Limited Surface Measurements
,”
24th International Congress of Theoretical and Applied Mechanics
, Montreal, QC, Canada, Aug. 22–26.
19.
Mei
,
Y.
,
Wang
,
S.
,
Shen
,
X.
,
Rabke
,
S.
, and
Goenezen
,
S.
,
2017
, “
Mechanics Based Tomography: A Preliminary Feasibility Study
,”
Sensors
,
17
(
5
), p.
1075
.
20.
Simon
,
M.
,
Guo
,
J.
,
Papazoglou
,
S.
,
Scholand-Engler
,
H.
,
Erdmann
,
C.
,
Melchert
,
U.
,
Bonsanto
,
M.
,
Braun
,
J.
,
Petersen
,
D.
,
Sack
,
I.
, and
Wuerfel
,
J.
,
2013
, “
Non-Invasive Characterization of Intracranial Tumors by Magnetic Resonance Elastography
,”
New J. Phys.
,
15
, p.
085024
.
21.
Park
,
E.
, and
Maniatty
,
A. M.
,
2006
, “
Shear Modulus Reconstruction in Dynamic Elastography: Time Harmonic Case
,”
Phys. Med. Biol.
,
51
(15), pp.
3697
3721
.
22.
Yin
,
M.
,
Rouviere
,
O.
, and
Ehman
,
R. L.
,
2005
, “
Shear Wave Diffraction Fields Generated by Longitudinal MRE Drivers
,”
International Society for Magnetic Resonance in Medicine
,
Miami, FL
, May 7–13, p.
2560
.
23.
Diaza
,
M. I.
,
Aquinoa
,
W.
, and
Bonnet
,
M.
,
2015
, “
A Modified Error in Constitutive Equation Approach for Frequency-Domain Viscoelasticity Imaging Using Interior Data
,”
Comput. Methods Appl. Mech. Eng.
,
296
, pp.
129
149
.
24.
Brigham
,
J. C.
, and
Aquino
,
W.
,
2009
, “
Inverse Viscoelastic Material Characterization Using Pod Reduced-Order Modeling in Acoustic–Structure Interaction
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9
), pp.
893
903
.
25.
Pagnacco
,
E.
,
Moreau
,
A.
, and
Lemosse
,
D.
,
2007
, “
Inverse Strategies for the Identification of Elastic and Viscoelastic Material Parameters Using Full-Field Measurements
,”
Mater. Sci. Eng.: A
,
452–453
, pp.
737
745
.
26.
Oliphant
,
T. E.
,
Manduca
,
A.
,
Ehman
,
R. L.
, and
Greenleaf
,
J. F.
,
2001
, “
Complex-Valued Stiffness Reconstruction for Magnetic Resonance Elastography by Algebraic Inversion of the Differential Equation
,”
Magn. Reson. Med.
,
45
(
2
), pp.
299
310
.
27.
Boulet
,
T.
,
Kelso
,
M. L.
, and
Othman
,
S. F.
,
2011
, “
Microscopic Magnetic Resonance Elastography of Traumatic Brain Injury Model
,”
J. Neurosci. Methods
,
201
(
2
), pp.
296
306
.
28.
Papazoglou
,
S.
,
Hamhaber
,
U.
,
Braun
,
J.
, and
Sack
,
I.
,
2008
, “
Algebraic Helmholtz Inversion in Planar Magnetic Resonance Elastography
,”
Phys. Med. Biol.
,
53
(12), pp.
3147
3158
.
29.
Romano
,
A. J.
,
Abraham
,
P. B.
,
Rossman
,
P. J.
,
Bucaro
,
J. A.
, and
Ehman
,
R. L.
,
2005
, “
Determination and Analysis of Guided Wave Propagation Using Magnetic Resonance Elastography
,”
Magn. Reson. Med.
,
54
(4), pp.
893
900
.
30.
Romano
,
A.
,
Guo
,
J.
,
Prokscha
,
T.
,
Meyer
,
T.
,
Hirsch
,
S.
,
Braun
,
J.
,
Sack
,
I.
, and
Scheel
,
M.
,
2014
, “
In Vivo Waveguide Elastography: Effects of Neurodegeneration in Patients With Amyotrophic Lateral Sclerosis
,”
Magn. Reson. Med.
,
72
(
6
), pp.
1755
1761
.
31.
Zhang
,
Y. X.
,
Oberai
,
A. A.
,
Barbone
,
P. E.
, and
Harari
,
I.
,
2012
, “
Solution of the Time-Harmonic Viscoelastic Inverse Problem With Interior Data in Two Dimensions
,”
Int. J. Numer. Methods Eng.
,
92
(
13
), pp.
1100
1116
.
32.
Goenezen
,
S.
,
2011
,
Inverse Problems in Finite Elasticity: An Application to Imaging the Nonlinear Elastic Properties of Soft Tissues
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
33.
Zhu
,
C.
,
Byrd
,
R. H.
,
Lu
,
P.
, and
Nocedal
,
J.
,
1994
, “L-BFGS-B: FORTRAN Subroutines for Large-Scale Bound Constrained Optimization,” Northwestern University, Evanston, IL, Technical Report No.
NAM-11
. http://users.iems.northwestern.edu/~nocedal/PDFfiles/lbfgsb.pdf
34.
Zhu
,
C.
,
Byrd
,
R. H.
,
Lu
,
P.
, and
Nocedal
,
J.
,
1994
, “L-BFGS-B: A Limited Memory FORTRAN Code for Solving Bound Constrained Optimization Problems,” Northwestern University, Evanston, IL, Report No. NAM-11.
35.
Dorn
,
O.
,
Bertete-Aguirre
,
H.
,
Berryman
,
J. G.
, and
Papanicolaou
,
G. C.
,
1999
, “
A Nonlinear Inversion Method for 3D Electromagnetic Imaging Using Adjoint Fields
,”
Inverse Probl.
,
15
(
6
), p.
1523
.
36.
Van Houten
,
E. E.
,
Paulsen
,
K. D.
,
Miga
,
M. I.
,
Kennedy
,
F. E.
, and
Weaver
,
J. B.
,
1999
, “
An Overlapping Subzone Technique for MR-Based Elastic Property Reconstruction
,”
Magn. Reson. Med.
,
42
(4), pp.
779
786
.
37.
Green
,
M. A.
,
Bilston
,
L. E.
, and
Sinkus
,
R.
,
2008
, “
In Vivo Brain Viscoelastic Properties Measured by Magnetic Resonance Elastography
,”
NMR Biomed.
,
21
(
7
), pp.
755
764
.
38.
Lakes
,
R.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
Cambridge, UK
.
39.
Christensen
,
R. M.
,
2003
,
Theory of Viscoelasticity
,
Dover Publications
,
Mineola, NY
.
40.
Aggarwal
,
A.
,
2017
, “
An Improved Parameter Estimation and Comparison for Soft Tissue Constitutive Models Containing an Exponential Function
,”
Biomech. Model. Mechanobiol.
,
16
(
4
), pp.
1309
1327
.
You do not currently have access to this content.