In order to design phononic crystals whose band-gaps are located in low-frequency ranges, researchers commonly adopt low stiffness polymeric materials as key constituents and exploit the high impedance mismatch between metals and polymers. However, there has been very little research on wave propagation at arbitrary angles in the sagittal plane of viscoelastic-elastic multilayered composites because there exist the intricate wave attenuation characteristics at the layer interfaces. The objective of our investigation is to obtain analytical dispersion relation for oblique wave motion in the sagittal plane of infinitely periodic multilayered composite composed of alternating viscoelastic and elastic solids, where the attenuation of harmonic plane waves is found to occur only in the direction perpendicular to the layers. By using this wave propagation characteristic, we directly apply the semi-analytical approach employed in elastic multilayered composites to calculate the dispersion relation of sagittal plane waves in alternating viscoelastic-elastic multilayered composites. Specifically, we consider a bilayered composite composed of alternating aluminum and polyurethane elastomer, whose complex-valued viscoelastic moduli are experimentally determined by performing dynamic mechanical analysis (DMA). The analysis shows that the alternating viscoelastic-elastic layered composite does not possess a phononic band-gap regardless of incident angles. In addition, wave motions at oblique angles are found to travel with a wide range of frequency contents compared to wave motions perpendicular to the layers. The presented analysis demonstrates that wave dispersion relation in viscoelastic-elastic layered composites is distinctly different from the corresponding elastic counterpart, and highlights the importance of the viscoelastic modeling of polymeric materials in wave dispersion analysis.

References

References
1.
Cao
,
W. W.
, and
Qi
,
W. K.
,
1995
, “
Plane Wave Propagation in Finite Composites
,”
J. Appl. Phys.
,
78
(
7
), pp.
4627
4632
.
2.
Zhang
,
V. Y.
,
Lefebvre
,
J. E.
, and
Gryba
,
T.
,
2006
, “
Resonant Transmission in Stop Bands of Acoustic Waves in Periodic Structures
,”
Ultrasonics
,
44
(
1
), pp.
899
904
.
3.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4–5
), pp.
779
806
.
4.
Jensen
,
J. S.
, and
Pedersen
,
N. L.
,
2006
, “
On Maximal Eigenfrequency Separation in Two-Material Structures: The 1D and 2D Scalar Cases
,”
J. Sound Vib.
,
289
(
4–5
), pp.
967
986
.
5.
Lee
,
C. Y.
,
Leamy
,
M. J.
, and
Nadler
,
J. H.
,
2010
, “
Frequency Band Structure and Absorption Predictions for Multi-Periodic Acoustic Composites
,”
J. Sound Vib.
,
329
(
10
), pp.
1809
1822
.
6.
Aly
,
A. H.
,
Mehaney
,
A.
, and
Abdel-Rahman
,
E.
,
2013
, “
Study of Physical Parameters on the Properties of Phononic Band Gaps
,”
Int. J. Mod. Phys. B
,
27
(
11
), p.
1350047
.
7.
Ponge
,
M. F.
,
Jacob
,
X.
, and
Gibiat
,
V.
,
2014
, “
Comparison of the Transmission Properties of Self-Similar, Periodic, and Random Multilayers at Normal Incidence
,”
J. Acoust. Soc. Am.
,
135
(
6
), pp.
3390
3397
.
8.
Nemat-Nasser
,
S.
,
Sadeghia
,
H.
,
Amirkhizib
,
A. V.
, and
Srivastavac
,
A.
,
2015
, “
Phononic Layered Composites for Stress-Wave Attenuation
,”
Mech. Res. Commun.
,
68
, pp.
65
69
.
9.
Nemat-Nasser
,
S.
, and
Srivastava
,
A.
,
2011
, “
Negative Effective Dynamic Mass-Density and Stiffness: Micro-Architecture and Phononic Transport in Periodic Composites
,”
AIP Adv.
,
1
(
4
), p.
041502
.
10.
Zhu
,
R.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Effective Dynamic Properties and Multi-Resonant Design of Acoustic Metamaterials
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031006
.
11.
Wang
,
Y.
,
Song
,
W.
,
Sun
,
E.
,
Zhang
,
R.
, and
Cao
,
W.
,
2014
, “
Tunable Passband in One-Dimensional Phononic Crystal Containing a Piezoelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38 PbTiO3 Single Crystal Defect Layer
,”
Physica E
,
60
, pp.
37
41
.
12.
Lee
,
S. M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
,
70
(
22
), pp.
2957
2959
.
13.
Pernot
,
G.
,
Stoffel
,
M.
,
Savic
,
I.
,
Pezzoli
,
F.
,
Chen
,
P.
,
Savelli
,
G.
,
Jacquot
,
A.
,
Schumann
,
J.
,
Denker
,
U.
,
Monch
,
I.
,
Deneke
,
C.
,
Schmidt
,
O. G.
,
Rampnoux
,
J. M.
,
Wang
,
S.
,
Plissonnier
,
M.
,
Rastelli
,
A.
,
Dilhaire
,
S.
, and
Mingo
,
N.
,
2010
, “
Precise Control of Thermal Conductivity at the Nanoscale Through Individual Phonon-Scattering Barriers
,”
Nat. Mater.
,
9
(
6
), pp.
491
495
.
14.
Liang
,
B.
,
Guo
,
X. S.
,
Tu
,
J.
,
Zhang
,
D.
, and
Cheng
,
J. C.
,
2010
, “
An Acoustic Rectifier
,”
Nat. Mater.
,
9
(
12
), pp.
989
992
.
15.
Ma
,
C.
,
Parker
,
R. G.
, and
Yellen
,
B. B.
,
2013
, “
Optimization of an Acoustic Rectifier for Uni-Directional Wave Propagation in Periodic Mass-Spring Lattices
,”
J. Sound Vib.
,
332
(
20
), pp.
4876
4894
.
16.
Saini
,
G.
,
Pezeril
,
T.
,
Torchinsky
,
D. H.
,
Yoon
,
J.
,
Kooi
,
S. E.
,
Thomas
,
E. L.
, and
Nelson
,
K. A.
,
2011
, “
Pulsed Laser Characterization of Multicomponent Polymer Acoustic and Mechanical Properties in the Sub-GHz Regime
,”
J. Mater. Res.
,
22
(
3
), pp.
719
723
.
17.
Lee
,
E. H.
, and
Yang
,
H. W.
,
1973
, “
On Waves in Composite Materials With Periodic Structure
,”
Soc. Ind. Appl. Math.
,
25
(
3
), pp.
492
499
.
18.
He
,
J. J.
,
Djafarirouhani
,
B.
, and
Sapriel
,
J.
,
1988
, “
Theory of Light-Scattering by Longitudinal-Acoustic Phonons in Superlattices
,”
Phys. Rev. B
,
37
(
8
), pp.
4086
4098
.
19.
Tamura
,
S.
, and
Wolfe
,
J. P.
,
1988
, “
Acoustic Phonons in Multiconstituent Superlattices
,”
Phys. Rev. B
,
38
(
8
), pp.
5610
5614
.
20.
Esquivel Sirvent
,
R.
, and
Cocoletzi
,
G. H.
,
1994
, “
Band Structure for the Propagation of Elastic Waves in Superlattices
,”
J. Acoust. Soc. Am.
,
95
(
1
), pp.
86
90
.
21.
Rouhani
,
B. D.
,
Dobrzynski
,
L.
,
Duparc
,
O.
,
Camley
,
R.
, and
Maradudin
,
A.
,
1983
, “
Sagittal Elastic Waves in Infinite and Semi-Infinite Superlattices
,”
Phys. Rev. B
,
28
(
4
), pp.
1711
1720
.
22.
Nougaoui
,
A.
, and
Rouhani
,
B. D.
,
1987
, “
Elastic Waves in Periodically Layered Infinite and Semi-Infinite Anisotropic Media
,”
Surf. Sci.
,
185
(
1–2
), pp.
125
153
.
23.
Nougaoui
,
A.
, and
Rouhani
,
B. D.
,
1988
, “
Complex Band Structure of Acoustic Waves in Superlattices
,”
Surf. Sci.
,
199
(
3
), pp.
623
637
.
24.
Sapriel
,
J.
, and
Rouhani
,
B. D.
,
1989
, “
Vibrations in Superlattice
,”
Surf. Sci. Rep.
,
10
(
4–5
), pp.
189
275
.
25.
Nayfeh
,
A. H.
,
1991
, “
The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media
,”
J. Acoust. Soc. Am.
,
89
(
4
), pp.
1521
1531
.
26.
Braga
,
A. M. B.
, and
Herrmann
,
G.
,
1992
, “
Floquet Waves in Anisotropic Periodically Layered Composites
,”
J. Acoust. Soc. Am.
,
91
(
3
), pp.
1211
1227
.
27.
Haque
,
A. B. M. T.
, and
Shim
,
J.
,
2016
, “
On Spatial Aliasing in the Phononic Band-Structure of Layered Composites
,”
Int. J. Solids Struct.
,
96
(
1
), pp.
380
392
.
28.
Haque
,
A. B. M. T.
,
Ghachi
,
R. F.
,
Alnahhal
,
W. I.
,
Aref
,
A.
, and
Shim
,
J.
,
2017
, “
Generalized Spatial Aliasing Solution for the Dispersion Analysis of Infinitely Periodic Multilayered Composites Using the Finite Element Method
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051010
.
29.
Tamura
,
S.
, and
Wolfe
,
J. P.
,
1987
, “
Coupled-Mode Stop Bands of Acoustic Phonons in Semiconductor Superlattices
,”
Phys. Rev. B
,
35
(
5
), pp.
2528
2531
.
30.
Hurley
,
D. C.
,
Tamura
,
S.
,
Wolfe
,
J. P.
, and
Morkoc
,
H.
,
1987
, “
Imaging of Acoustic Phonon Stop Bands in Superlattices
,”
Phys. Rev. Lett.
,
58
(
23
), pp.
2446
2449
.
31.
Calle
,
F.
, and
Cardona
,
M.
,
1989
, “
Frequency Gaps for Folded Acoustic Phonons in Superlattices
,”
Solid State Commun.
,
72
(
12
), pp.
1153
1158
.
32.
Mizuno
,
S.
,
2003
, “
Resonance and Mode Conversion of Phonons Scattered by Superlattices With Inhomogeneity
,”
Phys. Rev. B
,
68
(
19
), p.
193305
.
33.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Larabi
,
H.
,
Vasseur
,
J. O.
, and
Hladky-Hennion
,
A. C.
,
2008
, “
Low-Frequency Gaps in a Phononic Crystal Constituted of Cylindrical Dots Deposited on a Thin Homogeneous Plate
,”
Phys. Rev. B
,
78
(
10
), p. 104105.
34.
Assouar
,
M. B.
,
Senesi
,
M.
,
Oudich
,
M.
,
Ruzzene
,
M.
, and
Hou
,
Z. L.
,
2012
, “
Broadband Plate-Type Acoustic Metamaterial for Low-Frequency Sound Attenuation
,”
Appl. Phys. Lett.
,
101
(
17
), p. 173505.
35.
Varanasi
,
S.
,
Bolton
,
J. S.
,
Siegmund
,
T. H.
, and
Cipra
,
R. J.
,
2013
, “
The Low Frequency Performance of Metamaterial Barriers Based on Cellular Structures
,”
Appl. Acoust.
,
74
(
4
), pp.
485
495
.
36.
Hayashi
,
T.
,
Morimoto
,
Y.
,
Serikawa
,
M.
,
Tokuda
,
K.
, and
Tanaka
,
T.
,
1983
, “
Experimental Study on Cut-Off Phenomenon for Layered Composite
,”
Bull. JSME
,
26
(
211
), pp.
23
29
.
37.
Marechal
,
P.
,
Lenoir
,
O.
,
Khaled
,
A.
,
El Kettani
,
M. E. C.
, and
Chenouni
,
D.
,
2014
, “
Viscoelasticity Effect on a Periodic Plane Medium Immersed in Water
,”
Acta Acust. Acust.
,
100
(
6
), pp.
1036
1043
.
38.
Tanaka
,
K.
, and
Kon-No
,
A.
,
1980
, “
Harmonic Viscoelastic Waves Propagating Normal to the Layers of Laminated Media
,”
Bull. JSME
,
23
(
181
), pp.
1092
1099
.
39.
Mukherjee
,
S.
, and
Lee
,
E. H.
,
1975
, “
Dispersion Relations and Mode Shapes for Waves in Laminated Viscoelastic Composites by Finite Difference Methods
,”
Comput. Struct.
,
5
(
5–6
), pp.
279
285
.
40.
Mukherjee
,
S.
, and
Lee
,
E.
,
1978
, “
Dispersion Relations and Mode Shapes for Waves in Laminated Viscoelastic Composites by Variational Methods
,”
Int. J. Solids Struct.
,
14
(
1
), pp.
1
13
.
41.
Chevalier
,
Y.
,
1988
, “
Dispersion of Harmonic Waves in Elastic and Viscoelastic Periodic Composite Materials
,”
Recent Developments in Surface Acoustic Waves: Proceedings of European Mechanics Colloquium
, Vol.
7
,
D. F.
Parker
, and
G. A.
Maugin
, eds.,
Springer
,
Berlin
, pp.
260
268
.
42.
Zhao
,
Y. P.
, and
Wei
,
P. J.
,
2009
, “
The Band Gap of 1D Viscoelastic Phononic Crystal
,”
Comput. Mater. Sci.
,
46
(
3
), pp.
603
606
.
43.
Cooper
,
H. F.
, and
Reiss
,
E. L.
,
1966
, “
Reflection of Plane Viscoelastic Waves From Plane Boundaries
,”
J. Acoust. Soc. Am.
,
39
(
6
), pp.
1133
1138
.
44.
Shaw
,
R. P.
, and
Bugl
,
P.
,
1969
, “
Transmission of Plane Waves Through Layered Linear Viscoelastic Media
,”
J. Acoust. Soc. Am.
,
46
(
3
), pp.
649
654
.
45.
Borcherdt
,
R. D.
,
2009
,
Viscoelastic Waves in Layered Media
,
Cambridge University Press
, Cambridge, UK.
46.
Schoenberg
,
M.
,
1971
, “
Transmission and Reflection of Plane Waves at an Elastic-Viscoelastic Interface
,”
Geophys. J. R. Astron. Soc.
,
25
(
1–3
), pp.
35
47
.
47.
Silva
,
W.
,
1976
, “
Body Waves in a Layered Anelastic Solid
,”
Bull. Seismol. Soc. Am.
,
66
(
5
), pp.
1539
1554
.https://pubs.geoscienceworld.org/bssa/article-lookup/66/5/1539
48.
Borcherdt
,
R. D.
,
1977
, “
Reflection and Refraction of Type-II S Waves in Elastic and Anelastic Media
,”
Bull. Seismol. Soc. Am.
,
67
(
1
), pp.
43
67
.https://pubs.geoscienceworld.org/ssa/bssa/article/67/1/43/117599/
49.
Borcherdt
,
R. D.
,
1982
, “
Reflection-Refraction of General P- and Type-I S-Waves in Elastic and Anelastic Solids
,”
Geophys. J. R. Astron. Soc.
,
70
(
3
), pp.
621
638
.
50.
Krebes
,
E. S.
,
1983
, “
The Viscoelastic Reflection/Transmission Problem: Two Special Cases
,”
Bull. Seismol. Soc. Am.
,
73
(
6
), pp.
1673
1683
.https://pubs.geoscienceworld.org/ssa/bssa/article/73/6A/1673/118527/
51.
Borcherdt
,
R. D.
, and
Wennerberg
,
L.
,
1985
, “
General P, Type-I S and Type-II S Waves in Anelastic Solids; Inhomogeneous Wave Fields in Low-Loss Solids
,”
Bull. Seismol. Soc. Am.
,
75
(
6
), pp.
1729
1763
.https://pubs.er.usgs.gov/publication/70012378
52.
Sharma
,
M. D.
,
2015
, “
Snell's Law at the Boundaries of Real Elastic Media
,”
Math. Stud.
,
84
(
3–4
), pp.
75
94
.http://www.indianmathsociety.org.in/mathstudent-part-2-2015.pdf
53.
Sharma
,
M. D.
,
2011
, “
Wave Propagation in a Dissipative Poroelastic Medium
,”
IMA J. Appl. Math.
,
78
(
1
), pp.
59
69
.https://academic.oup.com/imamat/article/78/1/59/756444
54.
Buchen
,
P. W.
,
1971
, “
Plane Waves in Linear Viscoelastic Media
,”
Geophys. J. R. Astron. Soc.
,
23
(
5
), pp.
531
542
.
55.
Borcherdt
,
R. D.
,
1973
, “
Energy and Plane Waves in Linear Viscoelastic Media
,”
J. Geophys. Res.
,
78
(
14
), pp.
2442
2453
.
56.
Brinson
,
H. F.
, and
Brinson
,
L. C.
,
2008
,
Polymer Engineering Science and Viscoelasticity: An Introduction
,
Springer
,
New York
.
57.
Banergee
,
B.
,
2011
,
An Introduction to Metamaterials and Waves in Composites
,
CRC Press
,
Boca Raton, FL
.
58.
Coquin
,
G.
,
1964
, “
Attenuation of Guided Waves in Isotropic Viscoelastic Materials
,”
J. Acoust. Soc. Am.
,
36
(
6
), pp.
1074
1080
.
59.
Garcia-Barruetabena
,
J.
,
Cortes
,
F.
,
Manuel Abete
,
J.
,
Fernandez
,
P.
,
Jesus Lamela
,
M.
, and
Fernandez-Canteli
,
A.
,
2013
, “
Relaxation Modulus-Complex Modulus Interconversion for Linear Viscoelastic Materials
,”
Mech. Time-Depend. Mater.
,
17
(
3
), pp.
465
479
.
60.
Pike
,
R.
, and
Sabatier
,
P.
,
2002
,
Scattering: Scattering and Inverse Scattering in Pure and Applied Science
,
Academic Press
,
London
.
61.
Lockett
,
F. J.
,
1962
, “
The Reflection and Refraction of Waves at an Interface Between Viscoelastic Materials
,”
J. Mech. Phys. Solids
,
10
(
1
), pp.
53
64
.
62.
Cooper
,
H. F.
,
1967
, “
Reflection and Transmission of Oblique Plane Waves at a Plane Interface Between Viscoelastic Media
,”
J. Acoust. Soc. Am.
,
42
(
5
), pp.
1064
1069
.
63.
Sharma
,
M. D.
, and
Vashishth
,
A. K.
,
2011
, “
Intrinsic Attenuation From Inhomogeneous Waves in a Dissipative Anisotropic Poroelastic Medium
,”
Earth, Planets Space
,
63
(
2
), pp.
89
101
.
64.
Graff
,
K. F.
,
1991
,
Wave Motion in Elastic Solids
,
Dover Publications
,
Mineola, NY
.
65.
Kittel
,
C.
,
2004
,
Introduction to Solid State Physics
,
8th ed.
,
Wiley
,
New York
.
66.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
,
1976
,
Solid State Physics
,
Saunders College
,
Philadelphia, PA
.
67.
Birkhoff
,
G.
, and
MacLane
,
S.
,
1977
,
A Survey of Modern Algebra
,
4th ed.
,
Macmillan Publishing
,
New York
.
68.
Jensen
,
F. B.
,
Schmidt
,
H.
,
Porter
,
M. B.
, and
Kuperman
,
W. A.
,
2011
,
Computational Ocean Acoustics
,
Springer
,
New York
.
69.
Brito-Santana
,
H.
,
Wang
,
Y. S.
,
Rodriguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
,
Guinovart-Diaz
,
R.
, and
Tita
,
V.
,
2015
, “
A Dispersive Nonlocal Model for In-Plane Wave Propagation in Laminated Composites With Periodic Structures
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031006
.
70.
Brito-Santana
,
H.
,
Wang
,
Y. S.
,
Rodriguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
,
Guinovart-Diaz
,
R.
, and
Tita
,
V.
,
2015
, “
A Dispersive Nonlocal Model for Shear Wave Propagation in Laminated Composites With Periodic Structures
,”
Eur. J. Mech. A
,
49
(
1
), pp.
35
48
.
71.
Theocharis
,
G.
,
Richoux
,
O.
,
Garcia
,
V. R.
,
Merkel
,
A.
, and
Tournat
,
V.
,
2014
, “
Limits of Slow Sound Propagation and Transparency in Lossy, Locally Resonant Periodic Structures
,”
New J. Phys.
,
16
(
1
), p.
093017
.
72.
Yu
,
G. K.
, and
Wang
,
X. L.
,
2014
, “
Acoustical ‘Transparency’ Induced by Local Resonance in Bragg Bandgaps
,”
J. Appl. Phys.
,
115
(
4
), p.
044913
.
73.
Groby
,
J. P.
,
Huang
,
W.
,
Lardeau
,
A.
, and
Auregan
,
Y.
,
2015
, “
The Use of Slow Waves to Design Simple Sound Absorbing Materials
,”
J. Appl. Phys.
,
117
(
12
), p.
124903
.
74.
Groby
,
J. P.
,
Pommier
,
R.
, and
Auregan
,
Y.
,
2016
, “
Use of Slow Sound to Design Perfect and Broadband Passive Sound Absorbing Materials
,”
J. Acoust. Soc. Am.
,
139
(
4
), pp.
1660
1671
.
75.
Potel
,
C.
, and
de Belleval
,
J. F.
,
1993
, “
Propagation in an Anisotropic Periodically Multilayered Medium
,”
J. Acoust. Soc. Am.
,
93
(
5
), pp.
2669
2677
.
76.
Sigalas
,
M. M.
, and
Soukoulis
,
C. M.
,
1995
, “
Elastic-Wave Propagation Through Disordered and/or Absorptive Layered Systems
,”
Phys. Rev. B
,
51
(
5
), pp.
2780
2789
.
77.
Bousfia
,
A.
,
El Boudouti
,
E. H.
,
Djafari-Rouhani
,
B.
,
Bria
,
D.
,
Nougaoui
,
A.
, and
Velasco
,
V. R.
,
2001
, “
Omnidirectional Phononic Reflection and Selective Transmission in One-Dimensional Acoustic Layered Structures
,”
Surf. Sci.
,
482–485
(
2
), pp.
1175
1180
.
78.
Bria
,
D.
,
Djafari-Rouhani
,
B.
,
Bousfia
,
A.
,
El Boudouti
,
E. H.
, and
Nougaoui
,
A.
,
2001
, “
Absolute Acoustic Band Gap in Coupled Multilayer Structures
,”
Europhys. Lett.
,
55
(
6
), pp.
841
846
.
79.
Shen
,
M. R.
, and
Cao
,
W. W.
,
1999
, “
Acoustic Band-Gap Engineering Using Finite-Size Layered Structures of Multiple Periodicity
,”
Appl. Phys. Lett.
,
75
(
23
), pp.
3713
3715
.
80.
Shen
,
M. R.
, and
Cao
,
W. W.
,
2000
, “
Acoustic Bandgap Formation in a Periodic Structure With Multilayer Unit Cells
,”
J. Phys. D: Appl. Phys.
,
33
(
10
), pp.
1150
1154
.
81.
Santos
,
P. V.
,
Mebert
,
J.
,
Koblinger
,
O.
, and
Ley
,
L.
,
1987
, “
Experimental Evidence for Coupled-Mode Phonon Gaps in Superlattice Structures
,”
Phys. Rev. B
,
36
(
2
), pp.
1306
1309
.
82.
Naciri
,
T.
,
Navi
,
P.
, and
Granacher
,
O.
,
1990
, “
On Harmonic Wave Propagation in Multilayered Viscoelastic Media
,”
Int. J. Mech. Sci.
,
32
(
3
), pp.
225
231
.
You do not currently have access to this content.