Configurational forces acting on two-dimensional (2D) elastic line singularities are evaluated by path-independent J-, M-, and L-integrals in the framework of plane strain linear elasticity. The elastic line singularities considered in this study are the edge dislocation, the line force, the nuclei of strain, and the concentrated couple moment that are subjected to far-field loads. The interaction forces between two similar parallel elastic singularities are also calculated. Self-similar expansion force, M, evaluated for the line force shows that it is exactly the negative of the strain energy prelogarithmic factor as in the case for the well-known edge dislocation result. It is also shown that the M-integral result for the nuclei of strain and the L-integral result for the line force yield interesting nonzero expressions under certain circumstances.

References

References
1.
Rice
,
J.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
2.
Cherepanov
,
G.
,
1981
, “
Invariant Integrals
,”
Eng. Fract. Mech.
,
14
(1), pp.
39
58
.
3.
Günther
,
W.
,
1962
, “
Über einige randintegrale der elastomechanik
,”
Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft Band
,
14
, pp.
53
72
.
4.
Knowles
,
J.
, and
Sternberg
,
E.
,
1972
, “
On a Class of Conservation Laws in Linearized and Finite Elastostatics
,”
Arch. Ration. Mech. Anal.
,
44
(
3
), pp.
187
211
.
5.
Budiansky
,
B.
, and
Rice
,
J. R.
,
1973
, “
Conservation Laws and Energy-Release Rates
,”
ASME J. Appl. Mech.
,
40
(1), pp.
201
203
.
6.
Pak
,
Y. E.
,
Golebiewska-Herrmann
,
A.
, and
Herrmann
,
G.
,
1983
,
Energy Release Rates for Various Defects
,
Springer
,
Boston, MA
, pp.
1389
1397
.
7.
Kienzler
,
R.
, and
Herrmann
,
J.
,
2000
,
Mechanics in Material Space With Applications to Defect and Fracture Mechanics
, Springer-Verlag, Berlin.
8.
Eshelby
,
J.
,
1951
, “
The Force on an Elastic Singularity
,”
Philos. Trans. R. Soc. London, Ser. A
,
244
(
877
), pp.
87
112
.
9.
Golebiewska-Herrmann
,
A.
, and
Herrmann
,
G.
,
1981
, “
On Energy-Release Rates for a Plane Crack
,”
ASME J. Appl. Mech.
,
48
(
3
), pp.
525
528
.
10.
Pak
,
Y. E.
, and
Kim
,
S.
,
2010
, “
On the Use of Path-Independent Integrals in Calculating Mixed-Mode Stress Intensity Factors for Elastic and Thermoelastic Cases
,”
J. Therm. Stresses
,
33
(7), pp.
661
673
.
11.
Pak
,
Y. E.
,
1990
, “
Force on a Piezoelectric Screw Dislocation
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
863
869
.
12.
Lubarda
,
V. A.
,
2016
, “
Determination of Interaction Forces Between Parallel Dislocations by the Evaluation of J Integrals of Plane Elasticity
,”
Continuum Mech. Thermodyn.
,
28
(
1
), pp.
391
405
.
13.
Nabarro
,
F. R. N.
,
1985
, “
Material Forces and Configurational Forces in the Interaction of Elastic Singularities
,”
Proc. R. Soc. A
,
398
(
1815
), pp.
209
222
.
14.
Kachanov
,
M.
,
Shafiro
,
B.
, and
Tsukrov
,
I.
,
2003
,
Handbook of Elasticity Solutions
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
15.
Bower
,
A. F.
,
2009
,
Applied Mechanics of Solids
,
CRC Press
, Boca Raton, FL.
16.
Love
,
A. E.
,
1906
,
A Treatise of the Mathematical Theory of Elasticity
,
Cambridge University Press
, New York.
17.
Freund
,
L. B.
,
1978
, “
Stress Intensity Factor Calculations Based on a Conservation Integral
,”
Int. J. Solids Struct.
,
14
(3), pp.
241
250
.
18.
Suo
,
Z.
,
1999
, “
Zener's Crack and the M-Integral
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
417
418
.
19.
Rice
,
J. R.
,
1985
, “
Conserved and Integrals and Energetic Forces
,”
Fundamentals of Deformation and Fracture
,
B. A.
Bilby
,
K. J.
Miller
, and
J. R. Willis, eds.,
Cambridge University Press
, Cambridge, UK, pp.
33
56
.
20.
Seo
,
S. Y.
,
Mishra
,
D.
,
Park
,
C. Y.
, and
Pak
,
Y. E.
,
2015
, “
Energy Release Rates for a Misfitted Spherical Inclusion Under Far-Field Mechanical and Uniform Thermal Loads
,”
Eur. J. Mech. A
,
49
, pp.
169
182
.
You do not currently have access to this content.