Scar structures of natural animals can reinforce the wounds both mechanically and biologically to maintain the functions of the injured muscle and skin. Inspired by the scar structure, we present a dielectric elastomer (DE) with silver nanowire electrodes possessing the scar-like ability. This DE membrane can tolerate the failures by both electric breakdown and mechanical rupture. The DE actuator (DEA) can maintain their performances of force and displacement output after multiple failures. Scanning electronic microscope (SEM) images show that the scar-like structures accumulate around the electromechanical failure locations on the DE membrane as the stiffened and insulated regions, which prevent further short current and membrane rupture. J-integrals and stress distribution around the failure location have been calculated by finite element analysis to verify the mechanical reinforcements of the scar-like structures over crack propagation.

References

1.
Barcohen
,
Y.
,
Kim
,
K. J.
,
Ryeol Choi
,
H.
, and
Madden
,
J. D. W.
,
2007
, “
Editorial: Electroactive Polymer Materials
,”
Smart Mater. Struct.
,
16
(
2
), pp.
493
497
.
2.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp. 836–839.
3.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
4.
Bozlar
,
M.
,
Punckt
,
C.
,
Korkut
,
S.
,
Zhu
,
J.
,
Foo
,
C. C.
,
Suo
,
Z.
, and Aksay, I. A.,
2012
, “
Dielectric Elastomer Actuators With Elastomeric Electrodes
,”
Appl. Phys. Lett.
,
101
(
9
), p.
091907
.
5.
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2012
, “
Electromechanical and Dynamic Analyses of Tunable Dielectric Elastomer Resonator
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3754
3761
.
6.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
7.
Lu
,
T.
,
An
,
L.
,
Li
,
J.
,
Yuan
,
C.
, and
Wang
,
T. J.
,
2015
, “
Electro-Mechanical Coupling Bifurcation and Bulging Propagation in a Cylindrical Dielectric Elastomer Tube
,”
J. Mech. Phys. Solids
,
85
, pp.
160
175
.
8.
Huang
,
J.
,
Lu
,
T.
,
Zhu
,
J.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Large, Uni-Directional Actuation in Dielectric Elastomers Achieved by Fiber Stiffening
,”
Appl. Phys. Lett.
,
100
(
21
), p.
211901
.
9.
Mao
,
G.
,
Li
,
T.
,
Zou
,
Z.
,
Qu
,
S.
, and
Shi
,
M.
,
2014
, “
Prestretch Effect on Snap-Through Instability of Short-Length Tubular Elastomeric Balloons Under Inflation
,”
Int. J. Solids Struct.
,
51
(
11–12
), pp.
2109
2115
.
10.
Zhao
,
J.
,
Niu
,
J.
,
Mccoul
,
D.
,
Ren
,
Z.
, and
Pei
,
Q.
,
2015
, “
Phenomena of Nonlinear Oscillation and Special Resonance of a Dielectric Elastomer Minimum Energy Structure Rotary Joint
,”
Appl. Phys. Lett.
,
106
(
13
), p.
133504
.
11.
Mannsfeld
,
S. C.
,
Tee
,
B. C.
,
Stoltenberg
,
R. M.
,
Chen
,
C. V. H.
,
Barman
,
S.
,
Muir
,
B. V.
,
Sokolov
,
A. N.
,
Reese
,
C.
, and
Bao
,
Z.
,
2010
, “
Highly Sensitive Flexible Pressure Sensors With Microstructured Rubber Dielectric Layers
,”
Nat. Mater.
,
9
(
10
), pp.
859
864
.
12.
Li
,
T.
,
Xie
,
Y.
,
Li
,
C.
,
Yang
,
X.
,
Jin
,
Y.
,
Liu
,
J.
, and Huang, X.,
2015
, “
Fiber-Reinforced Dielectric Elastomer Laminates With Integrated Function of Actuating and Sensing
,”
Proc. SPIE
,
9430
, p.
94301W
.
13.
Gisby
,
T. A.
,
O'Brien
,
B. M.
, and
Anderson
,
I. A.
,
2013
, “
Self Sensing Feedback for Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
102
(
19
), p.
193703
.
14.
Mckay
,
T. G.
,
Rosset
,
S.
,
Anderson
,
I. A.
, and
Shea
,
H.
,
2014
, “
Dielectric Elastomer Generators That Stack Up
,”
Smart Mater. Struct.
,
24
(
1
), p.
015014
.
15.
Lee
,
R. H.
,
Basuli
,
U.
,
Lyu
,
M.
,
Kim
,
E. S.
, and
Nah
,
C.
,
2014
, “
Fabrication and Performance of a Donut-Shaped Generator Based on Dielectric Elastomer
,”
J. Appl. Polym.
,
131
(
7
), pp.
2113
2124
.
16.
Shian
,
S.
,
Diebold
,
R. M.
,
Mcnamara
,
A.
, and
Clarke
,
D. R.
,
2012
, “
Highly Compliant Transparent Electrodes
,”
Appl. Phys. Lett.
,
101
(
6
), pp.
344
625
.
17.
Low
,
S. H.
, and
Lau
,
G. K.
,
2014
, “
Bi-Axially Crumpled Silver Thin-Film Electrodes for Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
23
(
12
), p.
125021
.
18.
Yuan
,
W.
,
Hu
,
L. B.
,
Yu
,
Z. B.
,
Lam
,
T.
,
Biggs
,
J.
,
Ha
,
S. M.
,
Xi
,
D. J.
,
Chen
,
B.
,
Senesky
,
M. K.
,
Grüner
,
G.
, and
Pei
,
Q.
,
2008
, “
Fault-Tolerant Dielectric Elastomer Actuators Using Single-Walled Carbon Nanotube Electrodes
,”
Adv. Mater.
,
20
(
3
), pp.
621
625
.
19.
Wu
,
J.
,
Zang
,
J.
,
Rathmell
,
A. R.
,
Zhao
,
X.
, and
Wiley
,
B. J.
,
2013
, “
Reversible Sliding in Networks of Nanowires
,”
Nano Lett.
,
13
(
6
), pp.
2381
2386
.
20.
De
,
S.
,
Higgins
,
T. M.
,
Lyons
,
P. E.
,
Doherty
,
E. M.
,
Nirmalraj
,
P. N.
,
Blau
,
W. J.
,
Boland
,
J. J.
, and
Coleman
,
J. N.
,
2009
, “
Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios
,”
ACS Nano
,
3
(
7
), pp.
1767
1774
.
21.
Wynn
,
T. A.
,
2008
, “
Cellular and Molecular Mechanisms of Fibrosis
,”
J. Pathol.
,
214
(
2
), pp.
199
210
.
22.
Carpi
,
F.
,
Anderson
,
I.
,
Bauer
,
S.
,
Frediani
,
G.
,
Gallone
,
G.
,
Gei
,
M.
,
Graaf
,
C.
,
Mistral
,
C. J.
,
Kaal
,
W.
,
Kofod
,
G.
,
Kollosche
,
M.
,
Kornbluh
,
R.
,
Lassen
,
B.
,
Matysek
,
M.
,
Michel
,
S.
,
Nowak
,
S.
,
Brien
,
B. O.
,
Pei
,
Q. B.
,
Pelrine
,
R.
,
Rechenbach
,
B.
,
Rosset
,
S.
, and
Shea
,
H.
,
2015
, “
Standards for Dielectric Elastomer Transducers
,”
Smart Mater. Struct.
,
24
(
10
), p.
105025
.
23.
Pancheshnyi
,
S. V.
,
Lacoste
,
D. A.
, and
Bourdon
,
A.
,
2006
, “
Ignition of Propane–Air Mixtures by a Repetitively Pulsed Nanosecond Discharge
,”
IEEE Trans. Plasma Sci.
,
34
(
6
), pp.
2478
2487
.
24.
Naït-Abdelaziz
,
M.
,
Zaïri
,
F.
,
Qu
,
Z.
,
Hamdi
,
A.
, and
Hocine
,
N. A.
,
2012
, “
J Integral as a Fracture Criterion of Rubber-Like Materials Using the Intrinsic Defect Concept
,”
Mech. Mater.
,
53
, pp.
80
90
.
25.
Li
,
T.
,
Li
,
W.
,
Zou
,
Z.
,
Hong
,
Z.
, and
Qu
,
S.
,
2014
, “
Effects of Stretching Rate and Size on the Rupture of Acrylic Dielectric Elastomer
,”
Int. J. Appl. Mech.
,
6
(
3
), p.
1450026
.
You do not currently have access to this content.