Knowledge of the ideal shear strength of solid single crystals is of fundamental importance. However, it is very hard to determine this quantity at finite temperatures. In this work, a theoretical model for the temperature-dependent ideal shear strength of solid single crystals is established in the view of energy. To test the drawn model, the ideal shear properties of Al, Cu, and Ni single crystals are calculated and compared with that existing in the literature. The study shows that the ideal shear strength first remains approximately constant and then decreases almost linearly as temperature changes from absolute zero to melting point. As an example of application, the “brittleness parameter” of solids at elevated temperatures is quantitatively characterized for the first time.

References

References
1.
Bahr
,
D. F.
,
Kramer
,
D. E.
, and
Gerberich
,
W. W.
,
1998
, “
Non-Linear Deformation Mechanisms During Nanoindentation
,”
Acta Mater.
,
46
(
10
), pp.
3605
3617
.
2.
Lorenz
,
D.
,
Zeckzer
,
A.
,
Hilpert
,
U.
, and
Grau
,
P.
,
2003
, “
Pop-In Effect as Homogeneous Nucleation of Dislocations During Nanoindentation
,”
Phys. Rev. B
,
67
, p.
172101
.
3.
Minor
,
A. M.
,
Syed Asif
,
S. A.
,
Shan
,
Z. W.
,
Stach
,
E. A.
,
Cyrankowski
,
E.
,
Wyrobek
,
T. J.
, and
Warren
,
O. L.
,
2006
, “
A New View of the Onset of Plasticity During the Nanoindentation of Aluminium
,”
Nat. Mater.
,
5
, pp.
697
702
.
4.
Bei
,
H.
,
Shim
,
S.
,
George
,
E. P.
,
Miller
,
M. K.
,
Herbert
,
E. G.
, and
Pharr
,
G. M.
,
2007
, “
Compressive Strengths of Molybdenum Alloy Micro-Pillars Prepared Using a New Technique
,”
Scr. Mater.
,
57
(5), pp.
397
400
.
5.
Wu
,
B.
,
Heidelberg
,
A.
, and
Boland
,
J. J.
,
2005
, “
Mechanical Properties of Ultrahigh-Strength Gold Nanowires
,”
Nat. Mater.
,
4
, pp.
525
529
.
6.
Richter
,
G.
,
Hillerich
,
K.
,
Gianola
,
D. S.
,
Mönig
,
R.
,
Kraft
,
O.
, and
Volkert
,
C. A.
,
2009
, “
Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition
,”
Nano Lett.
,
9
(
8
), pp.
3048
3052
.
7.
Yue
,
Y. H.
,
Liu
,
P.
,
Zhang
,
Z.
,
Han
,
X. D.
, and
Ma
,
E.
,
2011
, “
Approaching the Theoretical Elastic Strain Limit in Copper Nanowires
,”
Nano Lett.
,
11
(8), pp.
3151
3155
.
8.
Li
,
J.
,
2007
, “
The Mechanics and Physics of Defect Nucleation
,”
MRS Bull.
,
32
(2), pp.
151
159
.
9.
Rice
,
J. R.
,
1992
, “
Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
,
40
(2), pp.
239
271
.
10.
Warner
,
D. H.
, and
Curtin
,
W. A.
,
2009
, “
Origins and Implications of Temperature-Dependent Activation Energy Barriers for Dislocation Nucleation in Face-Centered Cubic Metals
,”
Acta Mater.
,
57
(14), pp.
4267
4277
.
11.
Shang
,
S. L.
,
Wang
,
W. Y.
,
Wang
,
Y.
,
Du
,
Y.
,
Zhang
,
J. X.
,
Patel
,
A. D.
, and
Liu
,
Z. K.
,
2012
, “
Temperature-Dependent Ideal Strength and Stacking Fault Energy of FCC Ni: A First-Principles Study of Shear Deformation
,”
J. Phys.: Condens. Matter
,
24
(15), p.
155402
.
12.
Zhou
,
W.
,
Zhang
,
Y.
,
Sun
,
H.
, and
Chen
,
C.
,
2012
, “
Ideal Strength and Structural Instability of Aluminum at Finite Temperatures
,”
Phys. Rev. B
,
86
, p.
054118
.
13.
Iskandarov
,
A. M.
,
Dmitriev
,
S. V.
, and
Umeno
,
Y.
,
2011
, “
Temperature Effect on Ideal Shear Strength of Al and Cu
,”
Phys. Rev. B
,
84
, p.
224118
.
14.
Ryu
,
S.
,
Kang
,
K.
, and
Cai
,
W.
,
2011
, “
Predicting the Dislocation Nucleation Rate as a Function of Temperature and Stress
,”
J. Mater. Res.
,
26
(18), pp.
2335
2354
.
15.
Frenkel
,
J.
,
1926
, “
Theorie Der Elastizitatsgrenze Und Der Festigkeit Kristallinischer Korper
,”
Z. Phys.
,
37
(7–8), pp.
572
609
.
16.
Clatterbuck
,
D. M.
,
Chrzan
,
D. C.
, and
Morris
,
J. W.
, Jr.
,
2003
, “
The Ideal Strength of Iron in Tension and Shear
,”
Acta Mater.
,
51
(8), pp.
2271
2283
.
17.
Pokluda
,
J.
,
Černý
,
M.
,
Šandera
,
P.
, and
Šob
,
M.
,
2004
, “
Calculations of Theoretical Strength: State of the Art and History
,”
J. Comput. Aided Mater. Des.
,
11
(1), pp.
1
28
.
18.
Kelly
,
A.
, and
Macmillan
,
N. H.
,
1986
,
Strong Solids
,
Oxford University Press
,
London
.
19.
Anderson
,
P. M.
,
Hirth
,
J. P.
, and
Lothe
,
J.
,
2017
,
Theory of Dislocations
,
Cambridge University Press
,
New York
.
20.
Ogata
,
S.
,
Li
,
J.
,
Hirosaki
,
N.
,
Shibutani
,
Y.
, and
Yip
,
S.
,
2004
, “
Ideal Shear Strain of Metals and Ceramics
,”
Phys. Rev. B
,
70
, p.
104104
.
21.
Mackenzie
,
J. K.
,
1949
, “
A Theory of Sintering and The Theoretical Yield Strength of Solids
,” Ph.D. dissertation, University of Bristol, Bristol, UK.
22.
Roundy
,
D.
,
Krenn
,
C. R.
,
Cohen
,
M. L.
, and
Morris
,
J. W.
, Jr.
,
1999
, “
Ideal Shear Strengths of Fcc Aluminum and Copper
,”
Phys. Rev. Lett.
,
82
, pp.
2713
2716
.
23.
Krenn
,
C. R.
,
Roundy
,
D.
,
Morris
,
J. W.
, Jr
., and
Cohen
,
M. L.
,
2001
, “
The Non-Linear Elastic Behavior and Ideal Shear Strength of Al and Cu
,”
Mater. Sci. Eng. A
,
317
(1–2), pp.
44
48
.
24.
Ogata
,
S.
,
Li
,
J.
, and
Yip
,
S.
,
2002
, “
Ideal Pure Shear Strength of Aluminum and Copper
,”
Science
,
298
(5594), pp.
807
811
.
25.
Jahnátek
,
M.
,
Hafner
,
J.
, and
Krajčı´
,
M.
,
2009
, “
Shear Deformation, Ideal Strength, and Stacking Fault Formation of Fcc Metals: A Density-Functional Study of Al and Cu
,”
Phys. Rev. B
,
79
, p.
224103
.
26.
Černý
,
M.
, and
Pokluda
,
J.
,
2008
, “
Influence of Superimposed Normal Stress on the <112>{111} Shear Strength in Perfect FCC Metals
,”
Comp. Mater. Sci.
,
44
(1), pp.
127
130
.
27.
Ogata
,
S.
,
Li
,
J.
,
Shibutani
,
Y.
, and
Yip
,
S.
,
2004
, “
Ab Initio Study of Ideal Shear Strength
,”
IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength
, Osaka, Japan, July 6–11, pp.
401
410
.
28.
Černý
,
M.
, and
Pokluda
,
J.
,
2010
, “
The Theoretical Shear Strength of FCC Crystals Under Superimposed Triaxial Stress
,”
Acta Mater.
,
58
(8), pp.
3117
3123
.
29.
Liu
,
Y. L.
,
Zhang
,
Y.
,
Zhou
,
H. B.
,
Lu
,
G. H.
, and
Kohyama
,
M.
,
2008
, “
Theoretical Strength and Charge Redistribution of FCC Ni in Tension and Shear
,”
J. Phys.: Condens. Matter
,
20
(33), p.
335216
.
30.
Iskandarov
,
A. M.
,
Dmitriev
,
S. V.
, and
Umeno
,
Y.
,
2012
, “
On Accurate Approach for Molecular Dynamics Study of Ideal Strength at Elevated Temperature
,”
J. Solid Mech. Mater. Eng.
,
6
(1), pp.
29
38
.
31.
Cheng
,
T. B.
,
Li
,
W. G.
, and
Fang
,
D. N.
,
2014
, “
Modeling of the Temperature-Dependent Ideal Tensile Strength of Solids
,”
Phys. Scr.
,
89
(8), p.
085803
.
32.
Cheng
,
T. B.
, and
Li
,
W. G.
,
2015
, “
The Temperature-Dependent Ideal Tensile Strength of ZrB2, HfB2, and TiB2
,”
J. Am. Ceram. Soc.
,
98
(1), pp.
190
196
.
33.
Cheng
,
T. B.
,
Fang
,
D. N.
, and
Yang
,
Y. Z.
,
2017
, “
A Temperature-Dependent Surface Free Energy Model for Solid Single Crystals
,”
Appl. Surf. Sci.
,
393
, pp.
364
368
.
34.
Cheng
,
T. B.
,
Fang
,
D. N.
, and
Yang
,
Y. Z.
,
2017
, “
The Temperature-Dependent Surface Energy of Ceramic Single Crystals
,”
J. Am. Ceram. Soc.
,
100
(4), pp.
1598
1605
.
35.
Stedman
,
R.
,
Almqvist
,
L.
, and
Nilsson
,
G.
,
1967
, “
Phonon-Frequency Distributions and Heat Capacities of Aluminum and Lead
,”
Phys. Rev.
,
162
, pp.
549
557
.
36.
White
,
G. K.
, and
Minges
,
M. L.
,
1997
, “
Thermophysical Properties of Some Key Solids: An Update
,”
Int. J. Thermophys.
,
18
(5), pp.
1269
1327
.
37.
Stoner
,
E. C.
,
1936
, “
The Specific Heat of Nickel
,”
Philos. Mag.
,
22
(145), pp.
81
106
.
38.
Knacke
,
O.
,
Kubaschewski
,
O.
, and
Hesselmann
,
K.
,
1991
,
Thermochemical Properties of Inorganic Substances
,
Springer
,
Berlin
.
39.
Ye
,
D. L.
, and
Hu
,
J. H.
,
2002
,
Handbook of Practicality Inorganic Thermodynamics
,
Metallurgical Industry Press
,
Beijing, China
(in Chinese).
40.
Lu
,
X. G.
,
Selleby
,
M.
, and
Sundman
,
B.
,
2005
, “
Theoretical Modeling of Molar Volume and Thermal Expansion
,”
Acta Mater.
,
53
(8), pp.
2259
2272
.
41.
Varshni
,
Y. P.
,
1970
, “
Temperature Dependence of the Elastic Constants
,”
Phys. Rev. B
,
2
(10–15), pp.
3952
3958
.
42.
Gerlich
,
D.
, and
Fisher
,
E. S.
,
1969
, “
The High Temperature Elastic Moduli of Aluminum
,”
J. Phys. Chem. Solids
,
30
(5), pp.
1197
1205
.
43.
Chang
,
Y. A.
, and
Himmel
,
L.
,
1966
, “
Temperature Dependence of the Elastic Constants of Cu, Ag, and Au Above Room Temperature
,”
J. Appl. Phys.
,
37
(9), pp.
3567
3572
.
44.
Alers
,
G. A.
,
Neighbours
,
J. R.
, and
Sato
,
H.
,
1960
, “
Temperature Dependent Magnetic Contributions to the High Field Elastic Constants of Nickel and an Fe-Ni Alloy
,”
J. Phys. Chem. Solids
,
13
(1–2), pp.
40
55
.
45.
Renaud
,
P.
, and
Steinemann
,
S. G.
,
1989
, “
High Temperature Elastic Constants of Fcc Fe-Ni Invar Alloys
,”
Physics B
,
161
(1–3), pp.
75
78
.
46.
Siegel
,
D. J.
,
2005
, “
Generalized Stacking Fault Energies, Ductilities, and Twinnabilities of Ni and Selected Ni Alloys
,”
Appl. Phys. Lett.
,
87
(12), p.
121901
.
47.
Datta
,
A.
,
Srirangarajan
,
A.
,
Waghmare
,
U. V.
,
Ramamurty
,
U.
, and
To
,
A. C.
,
2011
, “
Surface Effects on Stacking Fault and Twin Formation in FCC Nanofilms: A First-Principles Study
,”
Comp. Mater. Sci.
,
50
(2), pp.
3342
3345
.
48.
Liu
,
L.
,
2015
, “Generalized Stacking Fault Energy, Twining and Dislocations of Materials at Finite Temperatures Based on the First-Principles Study and Quasiharmonic Approximation,” Ph.D. dissertation, Chongqing University, Chongqing, China (in Chinese).
49.
Vitos
,
L.
,
Ruban
,
A. V.
,
Skriver
,
H. L.
, and
Kollár
,
J.
,
1998
, “
The Surface Energy of Metals
,”
Surf. Sci.
,
411
(1–2), pp.
186
202
.
50.
Wan
,
J.
,
Fan
,
Y. L.
,
Gong
,
D. W.
,
Shen
,
S. G.
, and
Fan
,
X. Q.
,
1999
, “
Surface Relaxation and Stress of FCC Metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb
,”
Modell. Simul. Mater. Sci. Eng.
,
7
(2), pp.
189
206
.
51.
Mishin
,
Y.
,
Farkas
,
D.
,
Mehl
,
M. J.
, and
Papaconstantopoulos
,
D. A.
,
1999
, “
Interatomic Potentials for Monoatomic Metals From Experimental Data and Ab Initio Calculations
,”
Phys. Rev. B
,
59
(5), pp.
3393
3407
.
52.
Punkkinen
,
M. P. J.
,
Hu
,
Q. M.
,
Kwon
,
S. K.
,
Johansson
,
B.
,
Kollár
,
J.
, and
Vitos
,
L.
,
2011
, “
Surface Properties of 3d Transition Metals
,”
Philos. Mag.
,
91
(27), pp.
3627
3640
.
You do not currently have access to this content.