Guided by the experimental observations in the literature, this paper discusses two possible modes of defect growth in soft solids for which the size-dependent fracture mechanics is not always applicable. One is omni-directional growth, in which the cavity expands irreversibly in all directions; and the other is localized cracking along a plane. A characteristic material length is introduced, which may shed light on the dominant growth mode for defects of different sizes. To help determine the associated material properties from experimental measurement, the driving force of defect growth as a function of the remote load is calculated for both modes accordingly. Consequently, one may relate the measured critical load to the critical driving force and eventually to the associated material parameters. For comprehensiveness, the calculations here cover a class of hyperelastic materials. As an application of the proposed hypothesis, the experimental results (Cristiano et al., 2010, “An Experimental Investigation of Fracture by Cavitation of Model Elastomeric Networks,” J. Polym. Sci. Part B: Polym. Phys., 48(13), pp. 1409–1422) from two polymers with long and short chain elastomeric network are examined. The two polymers seem to be susceptible to either of the two dominating modes, respectively. The results are interpreted, and the material characteristic length and other growth parameters are determined.

References

References
1.
Smith
,
T. L.
,
1970
, “
Rupture Processes in Polymers
,”
Pure Appl. Chem.
,
23
(
2–3
), pp.
235
254
.
2.
Thomas
,
A. G.
,
1974
, “
Factors Influencing the Strength of Rubbers
,”
J. Polym. Sci.: Polym. Symp.
,
48
(1), pp.
145
157
.
3.
Gent
,
A.
, and
Lindley
,
P.
,
1959
, “
Internal Rupture of Bonded Rubber Cylinders in Tension
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
249
(1257), pp.
195
205
.
4.
Crosby
,
A. J.
,
Shull
,
K. R.
,
Lakrout
,
H.
, and
Creton
,
C.
,
2000
, “
Deformation and Failure Modes of Adhesively Bonded Elastic Layers
,”
J. Appl. Phys.
,
88
(
5
), pp.
2956
2966
.
5.
Brown
,
K.
, and
Creton
,
C.
,
2002
, “
Nucleation and Growth of Cavities in Soft Viscoelastic Layers Under Tensile Stress
,”
Eur. Phys. J. E
,
9
(
1
), pp.
35
40
.
6.
Dorfmann
,
A.
,
2003
, “
Stress Softening of Elastomers in Hydrostatic Tension
,”
Acta Mech.
,
165
(
3–4
), pp.
117
137
.
7.
Bayraktar
,
E.
,
Bessri
,
K.
, and
Bathias
,
C.
,
2008
, “
Deformation Behaviour of Elastomeric Matrix Composites Under Static Loading Conditions
,”
Eng. Fract. Mech.
,
75
(
9
), pp.
2695
2706
.
8.
Lefèvre
,
V.
,
Danas
,
K.
, and
Lopez-Pamies
,
O.
,
2017
, “
A General Result for the Magnetoelastic Response of Isotropic Suspensions of Iron and Ferrofluid Particles in Rubber, With Applications to Spherical and Cylindrical Specimens
,”
J. Mech. Phys. Solids
,
107
, pp.
343
364
.
9.
James
,
R. D.
, and
Spector
,
S. J.
,
1991
, “
The Formation of Filamentary Voids in Solids
,”
J. Mech. Phys. Solids
,
39
(
6
), pp.
783
813
.
10.
Hang-Sheng
,
H.
, and
Abeyaratne
,
R.
,
1992
, “
Cavitation in Elastic and Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
3
), pp.
571
592
.
11.
Dollhofer
,
J.
,
Chiche
,
A.
,
Muralidharan
,
V.
,
Creton
,
C.
, and
Hui
,
C.
,
2004
, “
Surface Energy Effects for Cavity Growth and Nucleation in an Incompressible Neo-Hookean Material—-Modeling and Experiment
,”
Int. J. Solids Struct.
,
41
(
22
), pp.
6111
6127
.
12.
Biwa
,
S.
,
2006
, “
Cavitation in Finite Elasticity With Surface Energy Effects
,”
Int. J. Non-Linear Mech.
,
41
(
9
), pp.
1084
1094
.
13.
Lopez-Pamies
,
O.
,
Idiart
,
M. I.
, and
Nakamura
,
T.
,
2011
, “
Cavitation in Elastomeric Solids: I—A Defect-Growth Theory
,”
J. Mech. Phys. Solids
,
59
(
8
), pp.
1464
1487
.
14.
Fan
,
C.
,
Jar
,
P.-Y. B.
, and
Cheng
,
J. R.
,
2007
, “
Prediction of Energy Release Rates for Crack Growth Using Fem-Based Energy Derivative Technique
,”
Eng. Fract. Mech.
,
74
(
8
), pp.
1243
1254
.
15.
Krishnan
,
V. R.
,
Hui
,
C. Y.
, and
Long
,
R.
,
2008
, “
Finite Strain Crack Tip Fields in Soft Incompressible Elastic Solids
,”
Langmuir
,
24
(
24
), pp.
14245
14253
.
16.
Nait-Abdelaziz
,
M.
,
Zairi
,
F.
,
Qu
,
Z.
,
Hamdi
,
A.
, and
Hocine
,
N. A.
,
2012
, “
J Integral as a Fracture Criterion of Rubber-like Materials Using the Intrinsic Defect Concept
,”
Mech. Mater.
,
53
, pp.
80
90
.
17.
Extrand
,
C.
, and
Gent
,
A.
,
1991
, “
Strength Under Various Modes of Deformation
,”
Int. J. Fract.
,
48
(
4
), pp.
281
297
.
18.
Lin
,
Y.-Y.
, and
Hui
,
C.-Y.
,
2004
, “
Cavity Growth From Crack-like Defects in Soft Materials
,”
Int. J. Fract.
,
126
(
3
), pp.
205
221
.
19.
Ait-Bachir
,
M.
,
Mars
,
W.
, and
Verron
,
E.
,
2012
, “
Energy Release Rate of Small Cracks in Hyperelastic Materials
,”
Int. J. Non-Linear Mech.
,
47
(
4
), pp.
22
29
.
20.
Ball
,
J. M.
,
1982
, “
Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
306
(
1496
), pp.
557
611
.
21.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
22.
Gent
,
A.
, and
Tompkins
,
D.
,
1969
, “
Nucleation and Growth of Gas Bubbles in Elastomers
,”
J. Appl. Phys.
,
40
(
6
), pp.
2520
2525
.
23.
Williams
,
M.
, and
Schapery
,
R.
,
1965
, “
Spherical Flaw Instability in Hydrostatic Tension
,”
Int. J. Fract. Mech.
,
1
(
1
), pp.
64
72
.
24.
Diani
,
J.
,
2001
, “
Irreversible Growth of a Spherical Cavity in Rubber-like Material: A Fracture Mechanics Description
,”
Int. J. Fract.
,
112
(
2
), pp.
151
161
.
25.
Lake
,
G.
,
1995
, “
Fatigue and Fracture of Elastomers
,”
Rubber Chem. Technol.
,
68
(
3
), pp.
435
460
.
26.
Yeoh
,
O.
,
2002
, “
Relation Between Crack Surface Displacements and Strain Energy Release Rate in Thin Rubber Sheets
,”
Mech. Mater.
,
34
(
8
), pp.
459
474
.
27.
Gent
,
A.
, and
Wang
,
C.
,
1991
, “
Fracture Mechanics and Cavitation in Rubber-like Solids
,”
J. Mater. Sci.
,
26
(
12
), pp.
3392
3395
.
28.
Long
,
R.
, and
Hui
,
C.-Y.
,
2010
, “
Effects of Triaxiality on the Growth of Crack-Like Cavities in Soft Incompressible Elastic Solids
,”
Soft Matter
,
6
(
6
), pp.
1238
1245
.
29.
Cristiano
,
A.
,
Marcellan
,
A.
,
Long
,
R.
,
Hui
,
C.-Y.
,
Stolk
,
J.
, and
Creton
,
C.
,
2010
, “
An Experimental Investigation of Fracture by Cavitation of Model Elastomeric Networks
,”
J. Polym. Sci. Part B: Polym. Phys.
,
48
(
13
), pp.
1409
1422
.
30.
Gent
,
A.
,
1990
, “
Cavitation in Rubber: A Cautionary Tale
,”
Rubber Chem. Technol.
,
63
(
3
), pp.
49
53
.
31.
Fu
,
Y. B.
, and
Ogden
,
R. W.
,
2001
,
Nonlinear Elasticity: Theory and Applications
, Vol.
283
,
Cambridge University Press
,
Cambridge, UK
.
32.
Green
,
A. E.
, and
Zerna
,
W.
,
1992
,
Theoretical Elasticity
,
Courier Corporation
,
New York
.
33.
Zhu
,
J.
,
Li
,
T.
,
Cai
,
S.
, and
Suo
,
Z.
,
2011
, “
Snap-Through Expansion of a Gas Bubble in an Elastomer
,”
J. Adhes.
,
87
(
5
), pp.
466
481
.
34.
Gent
,
A.
, and
Thomas
,
A.
,
1958
, “
Forms for the Stored (Strain) Energy Function for Vulcanized Rubber
,”
J. Polym. Sci.
,
28
(
118
), pp.
625
628
.
35.
Seitz
,
M. E.
,
Martina
,
D.
,
Baumberger
,
T.
,
Krishnan
,
V. R.
,
Hui
,
C.-Y.
, and
Shull
,
K. R.
,
2009
, “
Fracture and Large Strain Behavior of Self-Assembled Triblock Copolymer Gels
,”
Soft Matter
,
5
(
2
), pp.
447
456
.
36.
Gent
,
A.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
37.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
You do not currently have access to this content.