The shear stress–strain response of an aluminum alloy is measured to a shear strain of the order of one using a pure torsion experiment on a thin-walled tube. The material exhibits plastic anisotropy that is established through a separate set of biaxial experiments on the same tube stock. The results are used to calibrate Hill's quadratic anisotropic yield function. It is shown that because in simple shear the material axes rotate during deformation, this anisotropy progressively reduces the material tangent modulus. A parametric study demonstrates that the stress–strain response extracted from a simple shear test can be influenced significantly by the anisotropy parameters. It is thus concluded that the material axes rotation inherent to simple shear tests must be included in the analysis of such experiments when the material exhibits anisotropy.

References

References
1.
Tardif
,
N.
, and
Kyriakides
,
S.
,
2012
, “
Determination of Anisotropy and Material Hardening for Aluminum Sheet Metal
,”
Int. J. Solids Struct.
,
49
(
25
), pp.
3496
3506
.
2.
Chen
,
K.
,
Scales
,
M.
, and
Kyriakides
,
S.
,
2018
, “
Material Hardening of a High Ductility Aluminum Alloy From a Bulge Test
,”
Int. J. Mech. Sci.
,
138–139
, pp.
476
488
.
3.
ASTM,
2014
, “
Standard Test Method for Shear Testing of Thin Aluminum Alloy Products
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM B831
.https://www.astm.org/Standards/B831.htm
4.
Miyauchi
,
K.
,
1984
, “
A Proposal of a Planar Simple Shear Test in Sheet Metals
,”
Sci. Papers Inst. Phys. Chem. Res. (Jpn.)
,
87
, pp.
27
40
.
5.
Marciniak
,
Z.
,
1961
, “
Influence of the Sign Change of the Load on the Strain Hardening Curve of a Copper Test Subject to Torsion
,”
Arch. Mech. Stosowanj
,
13
, pp.
743
751
.
6.
Yin
,
Q.
,
Zillmann
,
B.
,
Suttner
,
S.
,
Gerstein
,
G.
,
Biasutti
,
M.
,
Tekkaya
,
A. E.
,
Wagner
,
M. F. X.
,
Merklein
,
M.
,
Schaper
,
M.
,
Halle
,
T.
, and
Brosius
,
A.
,
2014
, “
An Experimental and Numerical Investigation of Different Shear Test Configurations for Sheet Metal Characterization
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
1066
1074
.
7.
Barlat
,
F.
,
Aretz
,
H.
,
Yoon
,
J. W.
,
Karabin
,
M. E.
,
Brem
,
J. C.
, and
Dick
,
R. E.
,
2005
, “
Linear Transformation-Based Anisotropic Yield Functions
,”
Int. J. Plast.
,
21
(
5
), pp.
1009
1039
.
8.
Kang
,
J.
,
Wilkinson
,
D. S.
,
Wu
,
P. D.
,
Bruhis
,
M.
,
Jain
,
M.
,
Embury
,
J. D.
, and
Mishra
,
R. K.
,
2008
, “
Constitutive Behavior of AA5754 Sheet Materials at Large Strains
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031004
.
9.
Abedini
,
A.
,
Butcher
,
C.
,
Rahmaan
,
T.
, and
Worswick
,
M. J.
,
2017
, “
Evaluation and Calibration of Anisotropic Yield Criteria in Shear Loading: Constraints to Eliminate Numerical Artefacts
,”
Int. J. Solids Struct.
, (in press).
10.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford, UK
.
11.
Scales
,
M.
,
Tardif
,
N.
, and
Kyriakides
,
S.
,
2016
, “
Ductile Failure of Aluminum Alloy Tubes Under Combined Torsion and Tension
,”
Int. J. Solids Struct.
,
97–98
, pp.
116
128
.
12.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. Lond. A
,
193
(
1033
), pp.
281
297
.
13.
Hosford
,
W. F.
,
1972
, “
A Generalized Isotropic Yield Criterion
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
607
609
.
14.
ABAQUS,
2016
, “
ABAQUS Theory Guide Section 1.4.3
,” Dassault Systèmes Simulia Corp., Providence, RI.
You do not currently have access to this content.