Considerable effort has been made to model, predict, and mitigate wear as it has significant global impact on the environment, economy, and energy consumption. This work proposes generalized foundation-based wear models and a simulation procedure for single material and multimaterial composites subject to rotary or linear abrasive sliding wear. For the first time, experimental calibration of foundation parameters and asymmetry effects are included. An iterative wear simulation procedure is outlined that considers implicit boundary conditions to better reflect the response of the whole sample and counter-body system compared to existing models. Key features such as surface profile, corresponding contact pressure evolution, and material loss can be predicted. For calibration and validation, both rotary and linear wear tests are conducted on purpose-built tribometers. In particular, an experimental calibration procedure for foundation parameters is developed based on a Levenberg–Marquardt optimization algorithm. This procedure is valid for specific counter-body and wear systems using experimentally measured steady-state worn surface profiles. The calibrated foundation model is validated by a set of rotary wear tests on different bimaterial composite samples. The established efficient and accurate wear simulation framework is well suited for future design and optimization purposes.

References

References
1.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2017
, “
Influence of Tribology on Global Energy Consumption, Costs and Emissions
,”
Friction
,
5
(
3
), pp.
263
284
.
2.
Meng
,
H.
, and
Ludema
,
K.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181
, pp.
443
457
.
3.
Williams
,
J. A. A.
,
1999
, “
Wear Modelling: Analytical, Computational and Mapping: A Continuum Mechanics Approach
,”
Wear
,
225–229
, pp.
1
17
.
4.
Dorini
,
F. A.
, and
Sampaio
,
R.
,
2012
, “
Some Results on the Random Wear Coefficient of the Archard Model
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051008
.
5.
da Silva
,
C. R. Á.
,
Pintaude
,
G.
,
Al-Qureshi
,
H. A.
, and
Krajnc
,
M. A.
,
2010
, “
An Application of Mean Square Calculus to Sliding Wear
,”
ASME J. Appl. Mech.
,
77
(
2
), p.
021013
.
6.
Maekawa
,
K.
, and
Itoh
,
A.
,
1995
, “
Friction and Tool Wear in Nano-Scale Machining—A Molecular Dynamics Approach
,”
Wear
,
188
(
1–2
), pp.
115
122
.
7.
Fang
,
L.
,
Cen
,
Q.
,
Sun
,
K.
,
Liu
,
W.
,
Zhang
,
X.
, and
Huang
,
Z.
,
2005
, “
Fem Computation of Groove Ridge and Monte Carlo Simulation in Two-Body Abrasive Wear
,”
Wear
,
258
(
1–4
), pp.
265
274
.
8.
Argatov
,
I.
,
2011
, “
Asymptotic Modeling of Reciprocating Sliding Wear With Application to Local Interwire Contact
,”
Wear
,
271
(
7–8
), pp.
1147
1155
.
9.
Argatov
,
I.
, and
Tato
,
W.
,
2012
, “
Asymptotic Modeling of Reciprocating Sliding Wear–Comparison With Finite-Element Simulations
,”
Eur. J. Mech. A
,
34
, pp.
1
11
.
10.
Mamalis
,
A.
,
Vortselas
,
A.
, and
Panagopoulos
,
C.
,
2013
, “
Analytical and Numerical Wear Modeling of Metallic Interfaces: A Statistical Asperity Approach
,”
Tribol. Trans.
,
56
(
1
), pp.
121
129
.
11.
Hockenhull
,
B.
,
Kopalinsky
,
E.
, and
Oxley
,
P.
,
1993
, “
Predicting Wear for Metal Surfaces in Sliding Contact Using a Low-Cycle Fatigue Wear Model
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
85
92
.
12.
Tan
,
L.
,
Gao
,
D.
,
Zhou
,
J.
,
Liu
,
Y.
, and
Wang
,
Z.
,
2018
, “
Casing Wear Prediction Model Based on Drill String Whirling Motion in Extended-Reach Drilling
,”
Arabian J. Sci. Eng.
(epub).
13.
Tan
,
L.
,
Gao
,
D.
, and
Zhou
,
J.
,
2018
, “
A Prediction Model of Casing Wear in Extended-Reach Drilling With Buckled Drillstring
,”
ASME J. Appl. Mech.
,
85
(
2
), p.
021001
.
14.
Zhang
,
L.
, and
Tanaka
,
H.
,
1997
, “
Towards a Deeper Understanding of Wear and Friction on the Atomic Scale—A Molecular Dynamics Analysis
,”
Wear
,
211
(
1
), pp.
44
53
.
15.
Jang
,
I.
,
Burris
,
D. L.
,
Dickrell
,
P. L.
,
Barry
,
P. R.
,
Santos
,
C.
,
Perry
,
S. S.
,
Phillpot
,
S. R.
,
Sinnott
,
S. B.
, and
Sawyer
,
W. G.
,
2007
, “
Sliding Orientation Effects on the Tribological Properties of Polytetrafluoroethylene
,”
J. Appl. Phys.
,
102
(
12
), p.
123509
.
16.
Dong
,
Y.
,
Li
,
Q.
, and
Martini
,
A.
,
2013
, “
Molecular Dynamics Simulation of Atomic Friction: A Review and Guide
,”
J. Vac. Sci. Technol. A
,
31
(
3
), p.
030801
.
17.
Fang
,
L.
,
Liu
,
W.
,
Du
,
D.
,
Zhang
,
X.
, and
Xue
,
Q.
,
2004
, “
Predicting Three-Body Abrasive Wear Using Monte Carlo Methods
,”
Wear
,
256
(
7–8
), pp.
685
694
.
18.
Podra
,
P.
, and
Andersson
,
S.
,
1999
, “
Simulating Sliding Wear With Finite Element Method
,”
Tribol. Int.
,
32
(
2
), pp.
71
81
.
19.
Hegadekatte
,
V.
,
Huber
,
N.
, and
Kraft
,
O.
,
2004
, “
Finite Element Based Simulation of Dry Sliding Wear
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
1
), p.
57
.
20.
Kim
,
N. H.
,
Won
,
D.
,
Burris
,
D.
,
Holtkamp
,
B.
,
Gessel
,
G. R.
,
Swanson
,
P.
, and
Sawyer
,
W. G.
,
2005
, “
Finite Element Analysis and Experiments of Metal/Metal Wear in Oscillatory Contacts
,”
Wear
,
258
(
11–12
), pp.
1787
1793
.
21.
Mukras
,
S.
,
Kim
,
N. H.
,
Sawyer
,
W. G.
,
Jackson
,
D. B.
, and
Bergquist
,
L. W.
,
2009
, “
Numerical Integration Schemes and Parallel Computation for Wear Prediction Using Finite Element Method
,”
Wear
,
266
(
7–8
), pp.
822
831
.
22.
Söderberg
,
A.
, and
Andersson
,
S.
,
2009
, “
Simulation of Wear and Contact Pressure Distribution at the Pad-to-Rotor Interface in a Disc Brake Using General Purpose Finite Element Analysis Software
,”
Wear
,
267
(
12
), pp.
2243
2251
.
23.
Wu
,
J. S. S.
,
Lin
,
Y. T.
,
Lai
,
Y. L.
, and
Jar
,
P. Y. B.
,
2017
, “
A Finite Element Approach by Contact Transformation for the Prediction of Structural Wear
,”
ASME J. Tribol.
,
139
(
2
), p.
021602
.
24.
Arjmandi
,
M.
,
Ramezani
,
M.
,
Giordano
,
M.
, and
Schmid
,
S.
,
2017
, “
Finite Element Modelling of Sliding Wear in Three-Dimensional Woven Textiles
,”
Tribol. Int.
,
115
, pp.
452
460
.
25.
Woldman
,
M.
,
Van Der Heide
,
E.
,
Tinga
,
T.
, and
Masen
,
M. A.
,
2017
, “
A Finite Element Approach to Modeling Abrasive Wear Modes
,”
Tribol. Trans.
,
60
(
4
), pp.
711
718
.
26.
Schmidt
,
A. A.
,
Schmidt
,
T.
,
Grabherr
,
O.
, and
Bartel
,
D.
,
2018
, “
Transient Wear Simulation Based on Three-Dimensional Finite Element Analysis for a Dry Running Tilted Shaft-Bushing Bearing
,”
Wear
,
408
, pp.
171
179
.
27.
Sierra Suarez
,
J. A.
, and
Higgs
,
C. F.
,
2015
, “
A Contact Mechanics Formulation for Predicting Dishing and Erosion CMP Defects in Integrated Circuits
,”
Tribol. Lett.
,
59
(
2
), p.
121
.
28.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
29.
Kerr
,
A. D.
,
1964
, “
Elastic and Viscoelastic Foundation Models
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
491
498
.
30.
Clastornik
,
J.
,
Eisenberger
,
M.
,
Yankelevsky
,
D.
, and
Adin
,
M.
,
1986
, “
Beams on Variable Winkler Elastic Foundation
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
925
928
.
31.
Nobili
,
A.
,
2012
, “
Variational Approach to Beams Resting on Two-Parameter Tensionless Elastic Foundations
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
021010
.
32.
Põdra
,
P.
, and
Andersson
,
S.
,
1997
, “
Wear Simulation With the Winkler Surface Model
,”
Wear
,
207
(
1–2
), pp.
79
85
.
33.
Telliskivi
,
T.
,
2004
, “
Simulation of Wear in a Rolling–Sliding Contact by a Semi-Winkler Model and the Archard's Wear Law
,”
Wear
,
256
(
7–8
), pp.
817
831
.
34.
Sawyer
,
W.
,
2004
, “
Surface Shape and Contact Pressure Evolution in Two Component Surfaces: Application to Copper Chemical Mechanical Polishing
,”
Tribol. Lett.
,
17
(
2
), pp.
139
145
.
35.
Sidebottom
,
M. A.
,
Feppon
,
F.
,
Vermaak
,
N.
, and
Krick
,
B. A.
,
2016
, “
Modeling Wear of Multimaterial Composite Surfaces
,”
ASME J. Tribol.
,
138
(
4
), p.
041605
.
36.
Feppon
,
F.
,
Sidebottom
,
M. A.
,
Michailidis
,
G.
,
Krick
,
B. A.
, and
Vermaak
,
N.
,
2016
, “
Efficient Steady-State Computation for Wear of Multimaterial Composites
,”
ASME J. Tribol.
,
138
(
3
), p.
031602
.
37.
Jia
,
X.
,
Grejtak
,
T.
,
Krick
,
B.
, and
Vermaak
,
N.
,
2017
, “
Design of Composite Systems for Rotary Wear Applications
,”
Mater. Des.
,
134
, pp.
281
292
.
38.
Rowe
,
K. G.
,
Erickson
,
G. M.
,
Sawyer
,
W. G.
, and
Krick
,
B. A.
,
2014
, “
Evolution in Surfaces: Interaction of Topography With Contact Pressure During Wear of Composites Including Dinosaur Dentition
,”
Tribol. Lett.
,
54
(
3
), pp.
249
255
.
39.
Feppon
,
F.
,
Michailidis
,
G.
,
Sidebottom
,
M.
,
Allaire
,
G.
,
Krick
,
B.
, and
Vermaak
,
N.
,
2017
, “
Introducing a Level-Set Based Shape and Topology Optimization Method for the Wear of Composite Materials With Geometric Constraints
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
547
568
.
40.
Archard
,
J.
, and
Hirst
,
W.
,
1956
, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London A
,
236
(
1206
), pp.
397
410
.
41.
Kim
,
D.
,
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
Experimental Investigation of Thermal and Hydrodynamic Effects on Radially Grooved Thrust Washer Bearings
,”
Tribol. Trans.
,
49
(
2
), pp.
192
201
.
42.
Yu
,
T. H.
, and
Sadeghi
,
F.
,
2001
, “
Groove Effects on Thrust Washer Lubrication
,”
ASME J. Tribol.
,
123
(
2
), pp.
295
304
.
43.
Fwa
,
T.
,
Shi
,
X.
, and
Tan
,
S.
,
1996
, “
Use of Pasternak Foundation Model in Concrete Pavement Analysis
,”
J. Transp. Eng.
,
122
(
4
), pp.
323
328
.
44.
Gavin
,
H. P.
,
2017
, “
The Levenberg-Marquardt Method for Nonlinear Least Squares Curve-Fitting Problems
,”
epub
http://people.duke.edu/~hpgavin/ce281/lm.pdf.
You do not currently have access to this content.