We consider the plane deformations of an infinite elastic solid containing an arbitrarily shaped compressible liquid inhomogeneity in the presence of uniform remote in-plane loading. The effects of residual interface tension and interface elasticity are incorporated into the model of deformation via the complete Gurtin–Murdoch (G–M) interface model. The corresponding boundary value problem is reformulated and analyzed in the complex plane. A concise analytical solution describing the entire stress field in the surrounding solid is found in the particular case involving a circular inhomogeneity. Numerical examples are presented to illustrate the analytic solution when the uniform remote loading takes the form of a uniaxial compression. It is shown that using the simplified G–M interface model instead of the complete version may lead to significant errors in predicting the external loading-induced stress concentration in gel-like soft solids containing submicro- (or smaller) liquid inhomogeneities.

References

References
1.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
.
2.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Eshelby Formalism for Nano-Inhomogeneities
,”
Proc. R. Soc. A
,
461
(
2062
), pp.
3335
3353
.
3.
Lim
,
C. W.
,
Li
,
Z. R.
, and
He
,
L. H.
,
2006
, “
Size Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress
,”
Int. J. Solids Struct.
,
43
(
17
), pp.
5055
5065
.
4.
He
,
L. H.
, and
Li
,
Z. R.
,
2006
, “
Impact of Surface Stress on Stress Concentration
,”
Int. J. Solids Struct.
,
43
(
20
), pp.
6208
6219
.
5.
Tian
,
L.
, and
Rajapakse
,
R.
,
2007
, “
Analytical Solution for Size-Dependent Elastic Field of a Nanoscale Circular Inhomogeneity
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
568
574
.
6.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2298
2327
.
7.
Chen
,
T.
, and
Chiu
,
M. S.
,
2011
, “
Effects of Higher-Order Interface Stresses on the Elastic States of Two-Dimensional Composites
,”
Mech. Mater.
,
43
(
4
), pp.
212
221
.
8.
Zemlyanova
,
A. Y.
, and
Mogilevskaya
,
S. G.
,
2018
, “
Circular Inhomogeneity With Steigmann–Ogden Interface: Local Fields, Neutrality, and Maxwell's Type Approximation Formula
,”
Int. J. Solids Struct.
,
135
, pp.
85
98
.
9.
Dai
,
M.
,
Gharahi
,
A.
, and
Schiavone
,
P.
,
2018
, “
Analytic Solution for a Circular Nano-Inhomogeneity With Interface Stretching and Bending Resistance in Plane Strain Deformations
,”
Appl. Math. Model.
,
55
, pp.
160
170
.
10.
Sharma
,
P.
, and
Wheeler
,
L. T.
,
2007
, “
Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/Interface Tension
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
447
454
.
11.
Wang
,
G. F.
, and
Wang
,
T. J.
,
2006
, “
Deformation Around a Nanosized Elliptical Hole With Surface Effect
,”
Appl. Phys. Lett.
,
89
(
16
), p.
161901
.
12.
Zeng
,
X. W.
,
Wang
,
G. F.
, and
Wang
,
T. J.
,
2011
, “
Erratum: Deformation Around a Nanosized Elliptical Hole With Surface Effect [Appl. Phys. Lett. 89, 161901 (2006)]
,”
Appl. Phys. Lett
,
98
(
15
), p.
159901
.
13.
Tian
,
L.
, and
Rajapakse
,
R.
,
2007
, “
Elastic Field of an Isotropic Matrix With a Nanoscale Elliptical Inhomogeneity
,”
Int. J. Solids Struct.
,
44
(
24
), pp.
7988
8005
.
14.
Campàs
,
O.
,
Mammoto
,
T.
,
Hasso
,
S.
,
Sperling
,
R. A.
,
O'Connell
,
D.
,
Bischof
,
A. G.
,
Maas
,
R.
,
Weitz
,
D. A.
,
Mahadevan
,
L.
, and
Ingber
,
D. E.
,
2014
, “
Quantifying Cell-Generated Mechanical Forces Within Living Embryonic Tissues
,”
Nat. Methods
,
11
(
2
), p.
183
.
15.
Style
,
R. W.
,
Boltyanskiy
,
R.
,
Allen
,
B.
,
Jensen
,
K. E.
,
Foote
,
H. P.
,
Wettlaufer
,
J. S.
, and
Dufresne
,
E. R.
,
2015
, “
Stiffening Solids With Liquid Inclusions
,”
Nat. Phys.
,
11
(
1
), p.
82
.
16.
Chen
,
X.
,
Li
,
M.
,
Yang
,
M.
,
Liu
,
S.
,
Genin
,
G. M.
,
Xu
,
F.
, and
Lu
,
T. J.
,
2018
, “
The Elastic Fields of a Compressible Liquid Inclusion
,”
Extreme Mech. Lett.
,
22
, pp.
122
130
.
17.
Wu
,
J.
,
Ru
,
C. Q.
, and
Zhang
,
L.
,
2018
, “
An Elliptical Liquid Inclusion in an Infinite Elastic Plane
,”
Proc. R. Soc. A
,
474
(
2215
), p.
20170813
.
18.
Xu
,
Q.
,
Jensen
,
K. E.
,
Boltyanskiy
,
R.
,
Sarfati
,
R.
,
Style
,
R. W.
, and
Dufresne
,
E. R.
,
2017
, “
Direct Measurement of Strain-Dependent Solid Surface Stress
,”
Nat. Commun.
,
8
(
1
), p.
555
.
19.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
20.
Gurtin
,
M. E.
,
Weissmüller
,
J.
, and
Larche
,
F.
,
1998
, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
,
78
(
5
), pp.
1093
1109
.
21.
Style
,
R. W.
,
Wettlaufer
,
J. S.
, and
Dufresne
,
E. R.
,
2015
, “
Surface Tension and the Mechanics of Liquid Inclusions in Compliant Solids
,”
Soft Matter
,
11
(
4
), pp.
672
679
.
22.
Dai
,
M.
,
Wang
,
Y. J.
, and
Schiavone
,
P.
,
2018
, “
Integral-Type Stress Boundary Condition in the Complete Gurtin-Murdoch Surface Model With Accompanying Complex Variable Representation
,”
J. Elast.
(epub).
23.
Muskhelishvili
,
N. I.
,
1975
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen, The Netherlands
.
You do not currently have access to this content.