The problem of an infinite isotropic elastic space subjected to uniform far-field load and containing an isotropic elastic spherical inhomogeneity with Steigmann–Ogden interface is considered. The interface is treated as a shell of vanishing thickness possessing surface tension as well as membrane and bending stiffnesses. The constitutive and equilibrium equations of the Steigmann–Ogden theory for a spherical surface are written in explicit forms. Closed-form analytical solutions are derived for two cases of loading conditions—the hydrostatic loading and deviatoric loading with vanishing surface tension. The single inhomogeneity-based estimates of the effective properties of macroscopically isotropic materials containing spherical inhomogeneities with Steigmann–Ogden interfaces are presented. It is demonstrated that, in the case of vanishing surface tension, the Steigmann–Ogden model describes a special case of thin and stiff uniform interphase layer.

References

References
1.
Judelewicz
,
M.
,
Künzi
,
H. U.
,
Merk
,
N.
, and
Ilschner
,
B.
,
1994
, “
Microstructural Development During Fatigue of Copper Foils 20-100 μm Thick
,”
Mater. Sci. Eng. A
,
186
(
1–2
), pp.
135
142
.
2.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
,
10
(
4
), pp.
853
863
.
3.
Hong
,
S.
, and
Weil
,
R.
,
1996
, “
Low Cycle Fatigue of Thin Copper Foils
,”
Thin Solid Films
,
283
(
1–2
), pp.
175
181
.
4.
Read
,
D. T.
,
1998
, “
Tension-Tension Fatigue of Copper Films
,”
Int. J. Fatigue
,
20
(
3
), pp.
203
209
.
5.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnol.
,
11
(
3
), pp.
139
147
.
6.
Diao
,
J.
,
Gall
,
K.
, and
Dunn
,
M. L.
,
2003
, “
Surface-Stress-Induced Phase Transformation in Metal Nanowires
,”
Nat. Mater.
,
2
(
10
), pp.
656
660
.
7.
Gao
,
X.-L.
,
2006
, “
An Expanding Cavity Model Incorporating Strain-Hardening and Indentation Size Effects
,”
Int. J. Solids Struct.
,
43
(
21
), pp.
6615
6629
.
8.
Gao
,
X.-L.
,
2006
, “
New Expanding Cavity Model for Indentation Hardness Including Strain-Hardening and Indentation Size Effects
,”
J. Mater. Res.
,
21
(
5
), pp.
1317
1326
.
9.
He
,
J.
, and
Lilley
,
C. M.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
.
10.
Cammarata
,
R. C.
,
1994
, “
Surface and Interface Stress Effects in Thin Films
,”
Progr. Surf. Sci.
,
46
(
1
), pp.
1
38
.
11.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2103
2115
.
12.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2012
, “
Erratum to: Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
60
(
6
), pp.
1241
1242
.
13.
Gibbs
,
J. W.
,
1906
,
The Scientific Papers of J. Willard Gibbs
, Vol.
1
,
Longmans-Green
,
London
.
14.
Shuttleworth
,
R.
,
1950
, “
The Surface Tension of Solids
,”
Proc. Phys. Soc. Lond., A
,
63
(
5
), pp.
444
457
.
15.
Nicholson
,
M. M.
,
1955
, “
Surface Tension in Ionic Crystals
,”
Proc. Roy. Soc. Lond., A
,
228
(
1175
), pp.
490
510
.
16.
Orowan
,
E.
,
1970
, “
Surface Energy and Surface Tension in Solids and Liquids
,”
Proc. R. Soc. London, A
,
316
(
1527
), pp.
473
491
.
17.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
18.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solid. Struct.
,
14
(
6
), pp.
431
440
.
19.
Duan
,
H. L.
,
Wang
,
J.
, and
Karihaloo
,
B. L.
,
2009
, “
Theory of Elasticity at the Nanoscale
,”
Adv. Appl. Mech.
,
42
, pp.
1
68
.
20.
Javili
,
A.
,
Dell'Isola
,
F.
, and
Steinmann
,
P.
,
2013
, “
Geometrically Nonlinear Higher-Gradient Elasticity With Energetic Boundaries
,”
J. Mech. Phys. Solids
,
61
(
12
), pp.
2381
2401
.
21.
Javili
,
A.
,
McBride
,
A.
,
Steinmann
,
P.
, and
Reddy
,
B. D.
,
2014
, “
A Unified Computational Framework for Bulk and Surface Elasticity Theory: A Curvilinear-Coordinate-Based Finite Element Methodology
,”
Comput. Mech.
,
54
(
3
), pp.
745
762
.
22.
Javili
,
A.
,
Ottosen
,
N. S.
,
Ristinmaa
,
M.
, and
Mosler
,
J.
,
2018
, “
Aspects of Interface Elasticity Theory
,”
Math. Mech. Solids
,
23
(7), pp. 1004–1024.
23.
Javili
,
A.
,
2018
, “
Variational Formulation of Generalized Interfaces for Finite Deformation Elasticity
,”
Math. Mech. Solids
,
23
(9), pp. 1303–1322.
24.
Chatzigeorgiou
,
G.
,
Meraghni
,
F.
, and
Javili
,
A.
,
2017
, “
Generalized Interfacial Energy and Size Effects in Composites
,”
J. Mech. Phys. Solids
,
106
, pp.
257
282
.
25.
Sharma
,
P.
, and
Ganti
,
S.
,
2002
, “
Interfacial Elasticity Corrections to Size-Dependent Strain-State of Embedded Quantum Dots
,”
Phys. Status Solidi
,
234
(
3
), pp.
R10
R12
.
26.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
.
27.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelby's Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
663
671
.
28.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Luo
,
Z. Y.
,
2005
, “
Stress Concentration Tensors of Inhomogeneities With Interface Effects
,”
Mech. Mater.
,
37
(
7
), pp.
723
736
.
29.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Eshelby Formalism for Nano-Inhomogeneities
,”
Proc. R. Soc. London, A
,
461
(
2062
), pp.
3335
3353
.
30.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneoties With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1574
1596
.
31.
Duan
,
H. L.
,
Wang
,
J.
,
Karihaloo
,
B. L.
, and
Huang
,
Z. P.
,
2006
, “
Nanoporous Materials Can Be Made Stiffer That Non-Porous Counterparts by Surface Modification
,”
Acta Mater.
,
54
(
11
), pp.
2983
2990
.
32.
Lim
,
C. W.
,
Li
,
Z. R.
, and
He
,
L. H.
,
2006
, “
Size Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress
,”
Int. J. Solid. Struct.
,
43
(
17
), pp.
5055
5065
.
33.
He
,
L. H.
, and
Li
,
Z. R.
,
2006
, “
Impact of Surface Stress on Stress Concentration
,”
Int. J. Solid. Struct.
,
43
(
20
), pp.
6208
6219
.
34.
Mi
,
C.
, and
Kouris
,
D. A.
,
2006
, “
Nanoparticles Under the Influence of Surface/Interface Elasticity
,”
J. Mech. Mater. Struct.
,
1
(
4
), pp.
763
791
.
35.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
,
2007
, “
A United Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects—Part I: Theoretical Framework
,”
Mech. Mater.
,
39
(
1
), pp.
81
93
.
36.
Chen
,
T.
,
Dvorak
,
G. J.
, and
Yu
,
C. C.
,
2007
, “
Size-Dependent Elastic Properties of Unidirectional Nano-Composites With Interface Stresses
,”
Acta Mech.
,
188
(
1–2
), pp.
39
54
.
37.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
,
2007
, “
Elastic Field of an Isotropic Matrix With a Nanoscale Elliptical Inhomogeneity
,”
Int. J. Solids Struct.
,
44
(
24
), pp.
7988
8005
.
38.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2298
2327
.
39.
Jammes
,
M.
,
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2009
, “
Multiple Circular Nano- Inhomogeneities and/or Nano-Pores in One of Two Joined Isotropic Elastic Half-Planes
,”
Eng. Anal. Bound. Elem.
,
33
(
2
), pp.
233
248
.
40.
Kushch
,
V. I.
,
Mogilevskaya
,
S. G.
,
Stolarski
,
H. K.
, and
Crouch
,
S. L.
,
2011
, “
Elastic Interaction of Spherical Nanoinhomogeneities With Gurtin–Murdoch Type Interfaces
,”
J. Mech. Phys. Solids
,
59
(
9
), pp.
1702
1716
.
41.
Kushch
,
V. I.
,
Mogilevskaya
,
S. G.
, and
Stolarski
,
H. K.
,
2013
, “
Elastic Fields and Effective Moduli of Particulate Nanocomposites With the Gurtin-Murdoch Model of Interfaces
,”
Int. J. Solid. Struct.
,
50
(
7–8
), pp.
1141
1153
.
42.
Mi
,
C.
, and
Kouris
,
D. A.
,
2013
, “
Stress Concentration Around a Nanovoid Near the Surface of an Elastic Half-Space
,”
Int. J. Solid. Struct.
,
50
(
18
), pp.
2737
2748
.
43.
Mi
,
C.
, and
Kouris
,
D. A.
,
2017
, “
Surface Mechanics Implications for a Nanovoided Metallic Thin-Plate Under Uniform Boundary Loading
,”
Math. Mech. Solids
,
22
(
3
), pp.
401
419
.
44.
Gurtin
,
M. E.
,
Weissmüller
,
J.
, and
Larché
,
F.
,
1998
, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag., A
,
78
(
5
), pp.
1093
1109
.
45.
Gao
,
X.
,
Huang
,
Z.
,
Qu
,
J.
, and
Fang
,
D.
,
2014
, “
A Curvature-Dependent Interfacial Energy-Based Interface Stress Theory and Its Applications to Nano-Structured Materials: (I) general Theory
,”
J. Mech. Phys. Solids
,
66
, pp.
59
77
.
46.
Gao
,
X.
,
Huang
,
Z.
, and
Fang
,
D.
,
2017
, “
Curvature-Dependent Interfacial Energy and Its Effects on the Elastic Properties of Nanomaterials
,”
Int. J. Solid. Struct
,
113–114
, pp.
100
107
.
47.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1997
, “
Plain Deformations of Elastic Solids With Intrinsic Boundary Elasticity
,”
Proc. R. Soc. London, A
,
453
(
1959
), pp.
853
877
.
48.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1999
, “
Elastic Surface-Substrate Interactions
,”
Proc. R. Soc. London, A
,
455
(
1982
), pp.
437
474
.
49.
Gao
,
X.-L.
,
Park
,
S. K.
, and
Ma
,
H. M.
,
2009
, “
Analytical Solution for a Pressurized Thick-Walled Spherical Shell Based on a Simplified Strain Gradient Elasticity Theory
,”
Math. Mech. Solids
,
14
(
8
), pp.
747
758
.
50.
Gao
,
X.-L.
, and
Ma
,
H. M.
,
2010
, “
Solution of Eshelby's Inclusion Problem With a Bounded Domain and Eshelby's Tensor for a Spherical Inclusion in a Finite Spherical Matrix Based on a Simplified Strain Gradient Elasticity Theory
,”
J. Mech. Phys. Mater.
,
58
(
5
), pp.
779
797
.
51.
Wu
,
B.
,
Chen
,
W.
, and
Zhang
,
C.
,
2018
, “
On Free Vibration of Piezoelectric Nanospheres With Surface Effect
,”
Mech. Adv. Mater. Struct.
,
25
(
13
), pp.
1101
1114
.
52.
Eremeyev
,
V.
, and
Lebedev
,
L.
,
2016
, “
Mathematical Study of Boundary-Value Problems Within the Framework of Steigmann-Ogden Model of Surface Elasticity
,”
Continuum Mech. Therm.
,
28
(
1–2
), pp.
407
422
.
53.
Zemlyanova
,
A. Y.
,
2017
, “
A Straight Mixed Mode Fracture With the Steigmann-Ogden Boundary Condition
,”
Quart. J. Mech. Appl. Math.
,
70
(
1
), pp.
65
86
.
54.
Zemlyanova
,
A. Y.
,
2018
, “
Frictionless Contact of a Rigid Stamp With a Semi-Plane in the Presence of Surface Elasticity in the Steigmann-Ogden Form
,”
Math. Mech. Solids
,
23
(
8
), pp.
1140
1155
.
55.
Zemlyanova
,
A. Y.
, and
Mogilevskaya
,
S. G.
,
2018
, “
Circular Inhomogeneity With Steigmann–Ogden Interface: Local Fields, Neutrality, and Maxwell's Type Approximation Formula
,”
Int. J. Solids Struct.
,
135
, pp.
85
98
.
56.
Mi
,
C.
,
2018
, “
Elastic Behavior of a Half-Space With a Steigmann–Ogden Boundary Under Nanoscale Frictionless Patch Loads
,”
Int. J. Eng. Sci.
,
129
, pp.
129
144
.
57.
Han
,
Z.
,
Mogilevskaya
,
S. G.
, and
Schillinger
,
D.
,
2018
, “
Local Fields and Overall Transverse Properties of Unidirectional Composite Materials With Multiple Nanofibers and Steigmann-Ogden Interfaces
,”
Int. J. Solid. Struct.
,
147
, pp.
166
182
.
58.
Benveniste
,
Y.
, and
Miloh
,
T.
,
2001
, “
Imperfect Soft and Stiff Interfaces in Two-Dimensional Elasticity
,”
Mech. Mater.
,
33
(
6
), pp.
309
323
.
59.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Dover
,
Mineola, NY
.
60.
Itskov
,
M.
,
2007
,
Tensor Algebra and Tensor Analysis for Engineers
,
Springer International Publishing
, Cham,
Switzerland
.
61.
Christensen
,
R. M.
, and
Lo
,
K. H.
,
1979
, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
(
4
), pp.
315
330
.
62.
Christensen
,
R. M.
,
2012
,
Mechanics of Composite Materials
,
Dover
,
Mineola, NY
.
63.
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2007
, “
On the Use of Somigliana's Formulae and Series of Surface Spherical Harmonics for Elasticity Problems With Spherical Boundaries
,”
Eng. Anal. Boundary Elem
,
31
(
2
), pp.
116
132
.
64.
Hobson
,
E. W.
,
1965
,
The Theory of Spherical and Ellipsoidal Harmonics
,
Chelsea
,
New York
.
65.
Wang
,
J.
,
Duan
,
H. L.
,
Zhang
,
Z.
, and
Huang
,
Z. P.
,
2005
, “
An Anti-Interpenetration Model and Connections Between Interphase and Interface Models in Particle-Reinforced Composites
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
701
718
.
66.
McCartney
,
L. N.
, and
Kelly
,
A.
,
2008
, “
Maxwell's Far-Field Methodology Applied to the Prediction of Properties of Multi-Phase Isotropic Particulate Composites
,”
Proc. R. Soc. London, A
,
464
(
2090
), pp.
423
446
.
67.
McCartney
,
L. N.
,
2010
, “Maxwell's
Far-Field Methodology Predicting Elastic Properties of Multi-Phase Composites Reinforced With Aligned Transversely Isotropic Spheroids
,”
Philos. Mag.
,
90
(
31–32
), pp.
4175
4207
.
68.
Mogilevskaya
,
S. G.
,
Stolarski
,
H. K.
, and
Crouch
,
S. L.
,
2012
, “
On Maxwell's Concept of Equivalent Inhomogeneity: When Do the Interactions Matter?
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
391
417
.
69.
Mogilevskaya
,
S. G.
,
Zemlyanova
,
A. Y.
, and
Zammarchi
,
M.
,
2018
, “
On the Elastic Far-Field Response of a Two-Dimensional Coated Circular Inhomogeneity: Analysis and Applications
,”
Int. J. Solid. Struct.
,
130–131
, pp.
199
210
.
70.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
LaGrotta
,
A.
, and
Stolarski
,
H. K.
,
2010
, “
The Effects of Surface Elasticity and Surface Tension on the Transverse Overall Elastic Behavior of Unidirectional Nano-Composites
,”
Compos. Sci. Technol.
,
70
(
3
), pp.
427
434
.
You do not currently have access to this content.