A new type of all-solid metamaterial model with anisotropic density and fluid-like elasticity is proposed for controlling acoustic propagation in an underwater environment. The model consists of a regular hexagonal lattice as the host that defines the overall isotropic stiffness, in which all lattice beams have been sharpened at both ends to significantly diminish the shear resistance. The inclusion structure, which involves epoxy, rubber, and lead material constituents, is designed to attain a large density–anisotropy ratio in the broad frequency range. The wave-control capability of metamaterials is evaluated in terms of underwater acoustic stretching, shifting, and ground cloaking, which are generated by the transformation acoustic method. The decoupling design method was developed for the metamaterial microstructure using band-structure, effective-medium, and modal-field analyses. The acoustic performance of these metamaterial devices was finally verified with full-wave numerical simulations. Our study provides new insight into broadband underwater acoustic manipulation by all-solid anisotropic-density metamaterials.

References

References
1.
Norris
,
A. N.
,
2008
, “
Acoustic Cloaking Theory
,”
Proc. R. Soc. London Ser. A
,
464
(
2097
), pp.
2411
2434
.
2.
Milton
,
G. W.
, and
Cherkaev
,
A. V.
,
1995
, “
Which Elasticity Tensors Are Realizable?
,”
ASME J. Eng. Mater. Technol.
,
117
(
4
), pp.
483
493
.
3.
Chen
,
Y.
,
Liu
,
X.
, and
Hu
,
G.
,
2015
, “
Latticed Pentamode Acoustic Cloak
,”
Sci. Rep.
,
5
, p.
15745
.
4.
Chen
,
Y.
,
Zheng
,
M.
,
Liu
,
X.
,
Bi
,
Y.
,
Sun
,
Z.
,
Xiang
,
P.
,
Yang
,
J.
, and
Hu
,
G.
,
2017
, “
Broadband Solid Cloak for Underwater Acoustics
,”
Phys. Rev. B
,
95
(
18
), p.
180104
.
5.
Chen
,
Y.
,
Liu
,
X.
, and
Hu
,
G.
,
2016
, “
Design of Arbitrary Shaped Pentamode Acoustic Cloak Based on Quasi-Symmetric Mapping Gradient Algorithm
,”
J. Acoust. Soc. Am.
,
140
(
5
), pp.
EL405
EL409
.
6.
Daniel
,
T.
, and
José
,
S.-D.
,
2008
, “
Anisotropic Mass Density by Two-Dimensional Acoustic Metamaterials
,”
New J. Phys.
,
10
(
2
), p.
023004
.
7.
Zigoneanu
,
L.
,
Popa
,
B.-I.
,
Starr
,
A. F.
, and
Cummer
,
S. A.
,
2011
, “
Design and Measurements of a Broadband Two-Dimensional Acoustic Metamaterial With Anisotropic Effective Mass Density
,”
J. Appl. Phys
,
109
(
5
), p.
054906
.
8.
Qiu
,
C.
,
Hao
,
R.
,
Li
,
F.
,
Xu
,
S.
, and
Liu
,
Z.
,
2012
, “
Broadband Transmission Enhancement of Acoustic Waves Through a Hybrid Grating
,”
Appl. Phys. Lett.
,
100
(
19
), p. 667.
9.
Zigoneanu
,
L.
,
Popa
,
B.-I.
, and
Cummer
,
S. A.
,
2014
, “
Three-Dimensional Broadband Omnidirectional Acoustic Ground Cloak
,”
Nat. Mater
,
13
(
4
), pp.
352
355
.
10.
Popa
,
B.-I.
,
Zigoneanu
,
L.
, and
Cummer
,
S. A.
,
2011
, “
Experimental Acoustic Ground Cloak in Air
,”
Phys. Rev. Lett.
,
106
(
25
), p.
253901
.
11.
Liu
,
F.
,
Cai
,
F.
,
Peng
,
S.
,
Hao
,
R.
,
Ke
,
M.
, and
Liu
,
Z.
,
2009
, “
Parallel Acoustic Near-Field Microscope: A Steel Slab With a Periodic Array of Slits
,”
Phys. Rev. E
,
80
(
2 Pt 2
), p.
026603
.
12.
Zhu
,
J.
,
Christensen
,
J.
,
Jung
,
J.
,
Martin-Moreno
,
L.
,
Yin
,
X.
,
Fok
,
L.
,
Zhang
,
X.
, and
Garcia-Vidal
,
F. J.
,
2011
, “
A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging
,”
Nat. Phys.
,
7
(
1
), pp.
52
55
.
13.
Li
,
Y.
,
Liang
,
B.
,
Gu
,
Z.
,
Zou
,
X.
, and
Cheng
,
J.
,
2013
, “
Reflected Wavefront Manipulation Based on Ultrathin Planar Acoustic Metasurfaces
,”
Sci. Rep.
,
3
(
1
), p.
2546
.
14.
Tang
,
K.
,
Qiu
,
C.
,
Ke
,
M.
,
Lu
,
J.
,
Ye
,
Y.
, and
Liu
,
Z.
,
2014
, “
Anomalous Refraction of Airborne Sound Through Ultrathin Metasurfaces
,”
Sci. Rep.
,
4
(
1
), p.
6517
.
15.
Xie
,
Y.
,
Wang
,
W.
,
Chen
,
H.
,
Konneker
,
A.
,
Popa
,
B.-I.
, and
Cummer
,
S. A.
,
2014
, “
Wavefront Modulation and Subwavelength Diffractive Acoustics With an Acoustic Metasurface
,”
Nat. Commun.
,
5
(
1
), p.
5553
.
16.
Popa
,
B.-I.
, and
Cummer
,
S. A.
,
2011
, “
Homogeneous and Compact Acoustic Ground Cloaks
,”
Phys. Rev. B
,
83
(
22
), p.
224304
.
17.
Popa
,
B.-I.
,
Wang
,
W.
,
Konneker
,
A.
,
Cummer
,
S. A.
,
Rohde
,
C. A.
,
Martin
,
T. P.
,
Orris
,
G. J.
, and
Guild
,
M. D.
,
2016
, “
Anisotropic Acoustic Metafluid for Underwater Operation
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
3325
3331
.
18.
Milton
,
G. W.
, and
Willis
,
J. R.
,
2007
, “
On Modifications of Newton's Second Law and Linear Continuum Elastodynamics
,”
Proc. R. Soc. London Ser. A
,
463
(
2079
), pp.
855
880
.
19.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2011
, “
Locally Resonant Acoustic Metamaterials With 2D Anisotropic Effective Mass Density
,”
Philos. Mag.
,
91
(
6
), pp.
981
996
.
20.
Liu
,
A. P.
,
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
, and
Huang
,
G. L.
,
2012
, “
Multi-Displacement Microstructure Continuum Modeling of Anisotropic Elastic Metamaterials
,”
Wave Motion
,
49
(
3
), pp.
411
426
.
21.
Zhu
,
R.
,
Chen
,
Y. Y.
,
Wang
,
Y. S.
,
Hu
,
G. K.
, and
Huang
,
G. L.
,
2016
, “
A Single-Phase Elastic Hyperbolic Metamaterial With Anisotropic Mass Density
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
3303
3310
.
22.
Zhu
,
R.
,
Huang
,
G. L.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2011
, “
Experimental and Numerical Study of Guided Wave Propagation in a Thin Metamaterial Plate
,”
Phys. Lett. A
,
375
(
30–31
), pp.
2863
2867
.
23.
Zhu
,
R.
,
Liu
,
X. N.
,
Huang
,
G. L.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2012
, “
Microstructural Design and Experimental Validation of Elastic Metamaterial Plates With Anisotropic Mass Density
,”
Phys. Rev. B
,
86
(
14
), p.
144307
.
24.
Cheng
,
Y.
,
Zhou
,
X.
, and
Hu
,
G.
,
2017
, “
Broadband Dual-Anisotropic Solid Metamaterials
,”
Sci. Rep.
,
7
(
1
), p.
13197
.
25.
Liu
,
X. N.
,
Hu
,
G. K.
,
Huang
,
G. L.
, and
Sun
,
C. T.
,
2011
, “
An Elastic Metamaterial With Simultaneously Negative Mass Density and Bulk Modulus
,”
Appl. Phys. Lett.
,
98
(
25
), p.
251907
.
26.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
.
You do not currently have access to this content.