Mussel adhesion is a problem of great interest to scientists and engineers. Recent microscopic imaging suggests that the mussel material is porous with patterned void distributions. In this paper, we study the effect of the pore distribution on the interfacial-to-the overall response of an elastic porous plate, inspired from mussel plaque, glued to a rigid substrate by a cohesive interface. We show using a semi-analytical approach that the existence of pores in the vicinity of the crack reduces the driving force for crack growth and increases the effective ductility and fracture toughness of the system. We also demonstrate how the failure mode may switch between edge crack propagation and inner crack nucleation depending on the geometric characteristics of the bulk in the vicinity of the interface. Numerically, we investigate using the finite element method two different void patterns; uniform and graded. Each case is analyzed under displacement-controlled loading. We show that by changing the void size, gradation, or volume fraction, we may control the peak pulling force, maximum elongation at failure, as well as the total energy dissipated at complete separation. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.

References

References
1.
Filippidi
,
E.
,
DeMartini
,
D. G.
,
De Molina
,
P. M.
,
Danner
,
E. W.
,
Kim
,
J.
,
Helgeson
,
M. E.
,
Waite
,
J. H.
, and
Valentine
,
M. T.
,
2015
, “
The Microscopic Network Structure of Mussel (Mytilus) Adhesive Plaques
,”
J. R. Soc. Interface
,
12
(
113
), p.
20150827
.
2.
Lee
,
B. P.
,
Messersmith
,
P. B.
,
Israelachvili
,
J. N.
, and
Waite
,
J. H.
,
2011
, “
Mussel-Inspired Adhesives and Coatings
,”
Annu. Rev. Mater. Res.
,
41
(
1
), pp.
99
132
.
3.
Waite
,
J. H.
,
1987
, “
Nature's Underwater Adhesive Specialist
,”
Int. J. Adhes. Adhes.
,
7
(
1
), pp.
9
14
.
4.
Lee
,
H.
,
Scherer
,
N. F.
, and
Messersmith
,
P. B.
,
2006
, “
Single-Molecule Mechanics of Mussel Adhesion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
35
), pp.
12999
13003
.
5.
Petrone
,
L.
,
Kumar
,
A.
,
Sutanto
,
C. N.
,
Patil
,
N. J.
,
Kannan
,
S.
,
Palaniappan
,
A.
,
Amini
,
S.
,
Zappone
,
B.
,
Verma
,
C.
, and
Miserez
,
A.
,
2015
, “
Mussel Adhesion is Dictated by Time-Regulated Secretion and Molecular Conformation of Mussel Adhesive Proteins
,”
Nat. Commun.
,
6
(
1
), pp.
1
12
.
6.
Waite
,
J. H.
,
2017
, “
Mussel Adhesion—Essential Footwork
,”
J. Exp. Biol.
,
220
(
Pt. 4
), pp.
517
530
.
7.
Silverman
,
H. G.
, and
Roberto
,
F. F.
,
2007
, “
Understanding Marine Mussel Adhesion
,”
Mar. Biotechnol.
,
9
(
6
), pp.
661
681
.
8.
Bell
,
E. C.
, and
Gosline
,
J. M.
,
1996
, “
Mechanical Design of Mussel Byssus: Material Yield Enhances Attachment Strength
,”
J. Exp. Biol.
,
199
, pp.
1005
1017
.http://jeb.biologists.org/content/199/4/1005.short
9.
Desmond
,
K. W.
,
Zacchia
,
N. A.
,
Waite
,
J. H.
, and
Valentine
,
M. T.
,
2015
, “
Dynamics of Mussel Plaque Detachment
,”
Soft Matter
,
11
(
34
), pp.
6832
6839
.
10.
Ahn
,
B. K.
,
2017
, “
Perspectives on Mussel-Inspired Wet Adhesion
,”
J. Am. Chem. Soc.
,
139
(
30
), pp.
10166
10171
.
11.
Högberg
,
J. L.
,
Sørensen
,
B. F.
, and
Stigh
,
U.
,
2007
, “
Constitutive Behaviour of Mixed Mode Loaded Adhesive Layer
,”
Int. J. Solids Struct.
,
44
(
25–26
), pp.
8335
8354
.
12.
Furgiuele
,
F.
,
Leonardi
,
A.
,
Maletta
,
C.
, and
Paulino
,
G. H.
,
2007
, “
Fracture Analysis of Adhesive Joints Using Intrinsic Cohesive Zone Models
,”
Congress IGF19
, Milan, Italy, July 2–4, pp.
77
84
.https://paulino.ce.gatech.edu/conferences/papers/07alfano_IGF.pdf
13.
Ha
,
K.
,
Baek
,
H.
, and
Park
,
K.
,
2015
, “
Convergence of Fracture Process Zone Size in Cohesive Zone Modeling
,”
Appl. Math. Model.
,
39
(
19
), pp.
5828
5836
.
14.
Dassault Systèmes Simulia
,
2013
,
Abaqus Analysis User's Manual
,
6.13th ed.
,
Dassault Systèmes Simulia
,
Providence, RI
.
15.
Turon
,
A.
,
Dávila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
(
10
), pp.
1665
1682
.
16.
Yao
,
H.
, and
Gao
,
H.
,
2010
, “
Gibson-Soil-Like Materials Achieve Flaw-Tolerant Adhesion
,”
J. Comput. Theor. Nanosci.
,
7
(
7
), pp.
1299
1305
.
17.
Daniel
,
R.
,
Meindlhumer
,
M.
,
Zalesak
,
J.
,
Sartory
,
B.
,
Zeilinger
,
A.
,
Mitterer
,
C.
, and
Keckes
,
J.
,
2016
, “
Fracture Toughness Enhancement of Brittle Nanostructured Materials by Spatial Heterogeneity: A Micromechanical Proof for CrN/Cr and TiN/SiOx multilayers
,”
Mater. Des.
,
104
, pp.
227
234
.
18.
Srivastava
,
A.
,
Ponson
,
L.
,
Osovski
,
S.
,
Bouchaud
,
E.
,
Tvergaard
,
V.
, and
Needleman
,
A.
,
2014
, “
Effect of Inclusion Density on Ductile Fracture Toughness and Roughness
,”
J. Mech. Phys. Solids
,
63
(
1
), pp.
62
79
.
19.
Hossain
,
M. Z.
,
Hsueh
,
C. J.
,
Bourdin
,
B.
, and
Bhattacharya
,
K.
,
2014
, “
Effective Toughness of Heterogeneous Media
,”
J. Mech. Phys. Solids
,
71
(
1
), pp.
15
32
.
20.
Lee
,
H.
,
Lee
,
B. P.
, and
Messersmith
,
P. B.
,
2007
, “
A Reversible Wet/Dry Adhesive Inspired by Mussels and Geckos
,”
Nature
,
448
(
7151
), pp.
338
341
.
21.
Suzuki
,
T.
,
Matsuzaki
,
R.
,
Todoroki
,
A.
, and
Mizutani
,
Y.
,
2015
, “
Prediction of the Macroscopic Fracture Toughness of a Composite/Adhesive Interface With Periodic Surface Microstructures
,”
Int. J. Adhes. Adhes.
,
60
, pp.
16
22
.
22.
Kim
,
W. S.
,
Yun
,
I. H.
,
Lee
,
J. J.
, and
Jung
,
H. T.
,
2010
, “
Evaluation of Mechanical Interlock Effect on Adhesion Strength of Polymer metal Interfaces Using Micro-Patterned Surface Topography
,”
Int. J. Adhes. Adhes.
,
30
(
6
), pp.
408
417
.
23.
Glassmaker
,
N. J.
,
Jagota
,
A.
,
Hui
,
C.-Y.
,
Noderer
,
W. L.
, and
Chaudhury
,
M. K.
,
2007
, “
Biologically Inspired Crack Trapping for Enhanced Adhesion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
26
), pp.
10786
10791
.
24.
Gorumlu
,
S.
, and
Aksak
,
B.
,
2017
, “
Sticking to Rough Surfaces Using Functionally Graded Bio-Inspired Microfibres
,”
R. Soc. Open Sci.
,
4
(
6
), p.
161105
.
25.
Childers
,
A. S.
,
Brodnik
,
N. R.
, and
Faber
,
K. T.
,
2016
, “
Interfacial Frictional Stresses and Fracture Toughness of Biomorphic Graphite/Copper Interfaces
,”
Mater. Lett.
,
174
, pp.
106
109
.
26.
Del Campo
,
A.
,
Greiner
,
C.
, and
Arzt
,
E.
,
2007
, “
Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces
,”
Langmuir
,
23
(
20
), pp.
10235
10243
.
27.
Greiner
,
C.
,
Del Campo
,
A.
, and
Arzt
,
E.
,
2007
, “
Adhesion of Bioinspired Micropatterned Surfaces: Effects of Pillar Radius, Aspect Ratio, and Preload
,”
Langmuir
,
23
(
7
), pp.
3495
3502
.
28.
Khaderi
,
S. N.
,
Fleck
,
N. A.
,
Arzt
,
E.
, and
McMeeking
,
R. M.
,
2015
, “
Detachment of an Adhered Micropillar From a Dissimilar Substrate
,”
J. Mech. Phys. Solids
,
75
, pp.
159
183
.
29.
Fleck
,
N. A.
,
Khaderi
,
S. N.
,
McMeeking
,
R. M.
, and
Arzt
,
E.
,
2017
, “
Cohesive Detachment of an Elastic Pillar From a Dissimilar Substrate
,”
J. Mech. Phys. Solids
,
101
, pp.
30
43
.
30.
Balijepalli
,
R. G.
,
Fischer
,
S. C. L.
,
Hensel
,
R.
,
McMeeking
,
R. M.
, and
Arzt
,
E.
,
2017
, “
Numerical Study of Adhesion Enhancement by Composite Fibrils With Soft Tip Layers
,”
J. Mech. Phys. Solids
,
99
, pp.
357
378
.
31.
Launey
,
M. E.
, and
Ritchie
,
R. O.
,
2009
, “
On the Fracture Toughness of Advanced Materials
,”
Adv. Mater.
,
21
(
20
), pp.
2103
2110
.
32.
Steenbrink
,
A. C.
,
Van Der Giessen
,
E.
, and
Wu
,
P. D.
,
1997
, “
Void Growth in Glassy Polymers
,”
J. Mech. Phys. Solids
,
45
(
3
), pp.
405
437
.
33.
Crosby
,
A. J.
,
Shull
,
K. R.
,
Lakrout
,
H.
, and
Creton
,
C.
,
2000
, “
Deformation and Failure Modes of Adhesively Bonded Elastic Layers
,”
J. Appl. Phys.
,
88
(
5
), pp.
2956
2966
.
34.
Creton
,
C.
, and
Lakrout
,
H.
,
2000
, “
Micromechanics of Flat-Probe Adhesion Tests of Soft Viscoelastic Polymer Films
,”
J. Polym. Sci. Part B Polym. Phys.
,
38
(
7
), pp.
965
979
.
35.
Williams
,
J. G.
, and
Hadavinia
,
H.
,
2002
, “
Analytical Solutions for Cohesive Zone Models
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
809
825
.
You do not currently have access to this content.