Vibrational microplatforms that exploit complex three-dimensional (3D) architectures assembled via the controlled compressive buckling technique represent promising candidates in 3D micro-electromechanical systems (MEMS), with a wide range of applications such as oscillators, actuators, energy harvesters, etc. However, the accuracy and efficiency of such 3D MEMS might be significantly reduced by the viscoelastic damping effect that arises from material viscosity. Therefore, a clear understanding and characterization of such effects are essential to progress in this area. Here, we present a study on the viscoelastic damping effect in complex 3D structures via an analytical model and finite element analysis (FEA). By adopting the Kelvin–Voigt model to characterize the material viscoelasticity, an analytical solution is derived for the vibration of a buckled ribbon. This solution then yields a scaling law for the half-band width or the quality factor of vibration that can be extended to other classes of complex 3D structures, as validated by FEA. The scaling law reveals the dependence of the half-band width on the geometries of 3D structures and the compressive strain. The results could serve as guidelines to design novel 3D vibrational microplatforms for applications in MEMS and other areas of technology.

References

References
1.
Feiner
,
R.
,
Engel
,
L.
,
Fleischer
,
S.
,
Malki
,
M.
,
Gal
,
I.
,
Shapira
,
A.
,
Shacham-Diamand
,
Y.
, and
Dvir
,
T.
,
2016
, “
Engineered Hybrid Cardiac Patches With Multifunctional Electronics for Online Monitoring and Regulation of Tissue Function
,”
Nat. Mater.
,
15
(
6
), pp.
679
685
.
2.
Leong
,
T. G.
,
Randall
,
C. L.
,
Benson
,
B. R.
,
Bassik
,
N.
,
Stern
,
G. M.
, and
Gracias
,
D. H.
,
2009
, “
Tetherless Thermobiochemically Actuated Microgrippers
,”
Proc. Natl. Acad. Sci.
,
106
(
3
), pp.
703
708
.
3.
Tian
,
B.
,
Liu
,
J.
,
Dvir
,
T.
,
Jin
,
L.
,
Tsui
,
J. H.
,
Qing
,
Q.
,
Suo
,
Z.
,
Langer
,
R.
,
Kohane
,
D. S.
, and
Lieber
,
C. M.
,
2012
, “
Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues
,”
Nat. Mater.
,
11
(
11
), pp.
986
994
.
4.
Muth
,
J. T.
,
Vogt
,
D. M.
,
Truby
,
R. L.
,
Mengüç
,
Y.
,
Kolesky
,
D. B.
,
Wood
,
R. J.
, and
Lewis
,
J. A.
,
2014
, “
Embedded 3D Printing of Strain Sensors Within Highly Stretchable Elastomers
,”
Adv. Mater.
,
26
(
36
), pp.
6307
6312
.
5.
Gu
,
L.
,
Tavakoli
,
M. M.
,
Zhang
,
D.
,
Zhang
,
Q.
,
Waleed
,
A.
,
Xiao
,
Y.
,
Tsui
,
K. H.
,
Lin
,
Y.
,
Liao
,
L.
,
Wang
,
J.
, and
Fan
,
Z.
,
2016
, “
3D Arrays of 1024‐Pixel Image Sensors Based on Lead Halide Perovskite Nanowires
,”
Adv. Mater.
,
28
(
44
), pp.
9713
9721
.
6.
Li
,
X.
,
Lin
,
Z.-H.
,
Cheng
,
G.
,
Wen
,
X.
,
Liu
,
Y.
,
Niu
,
S.
, and
Wang
,
Z. L.
,
2014
, “
3D Fiber-Based Hybrid Nanogenerator for Energy Harvesting and as a Self-Powered Pressure Sensor
,”
ACS Nano
,
8
(
10
), pp.
10674
10681
.
7.
Xu
,
L.
,
Gutbrod
,
S. R.
,
Bonifas
,
A. P.
,
Su
,
Y.
,
Sulkin
,
M. S.
,
Lu
,
N.
,
Chung
,
H.-J.
,
Jang
,
K.-I.
,
Liu
,
Z.
,
Ying
,
M.
,
Lu
,
C.
,
Webb
,
C.
,
Kim
,
J. S.
,
Laughner
,
J. I.
,
Cheng
,
H.
,
Liu
,
Y.
,
Ameen
,
A.
,
Jeong
,
J. W.
,
Kim
,
G. T.
,
Huang
,
Y.
,
Efimov
,
I. R.
, and
Rogers
,
J. A.
,
2014
, “
3D Multifunctional Integumentary Membranes for Spatiotemporal Cardiac Measurements and Stimulation Across the Entire Epicardium
,”
Nat. Commun.
,
5
, p.
3329
.
8.
Fan
,
Z.
,
Razavi
,
H.
,
Do
,
J-W.
,
Moriwaki
,
A.
,
Ergen
,
O.
,
Chueh
,
Y.-L.
,
Leu
,
P. W.
,
Ho
,
J. C.
,
Takahashi
,
T.
, and
Reichertz
,
L. A.
,
2009
, “
Three-Dimensional Nanopillar-Array Photovoltaics on Low-Cost and Flexible Substrates
,”
Nat. Mater.
,
8
(
8
), pp.
648
653
.
9.
Valentine
,
J.
,
Zhang
,
S.
,
Zentgraf
,
T.
,
Ulin-Avila
,
E.
,
Genov
,
D. A.
,
Bartal
,
G.
, and
Zhang
,
X.
,
2008
, “
Three-Dimensional Optical Metamaterial With a Negative Refractive Index
,”
Nature
,
455
(
7211
), pp.
376
379
.
10.
Xiao
,
X.
,
Zhou
,
W.
,
Kim
,
Y.
,
Ryu
,
I.
,
Gu
,
M.
,
Wang
,
C.
,
Liu
,
G.
,
Liu
,
Z.
, and
Gao
,
H.
,
2015
, “
Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li‐Ion Battery
,”
Adv. Funct. Mater.
,
25
(
9
), pp.
1426
1433
.
11.
Sun
,
K.
,
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li‐Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
12.
Ning
,
H.
,
Pikul
,
J. H.
,
Zhang
,
R.
,
Li
,
X.
,
Xu
,
S.
,
Wang
,
J.
,
Rogers
,
J. A.
,
King
,
W. P.
, and
Braun
,
P. V.
,
2015
, “
Holographic Patterning of High-Performance on-Chip 3D Lithium-Ion Microbatteries
,”
Proc. Natl. Acad. Sci.
,
112
(
21
), pp.
6573
6578
.
13.
Nawroth
,
J. C.
,
Lee
,
H.
,
Feinberg
,
A. W.
,
Ripplinger
,
C. M.
,
McCain
,
M. L.
,
Grosberg
,
A.
,
Dabiri
,
J. O.
, and
Parker
,
K. K.
,
2012
, “
A Tissue-Engineered Jellyfish With Biomimetic Propulsion
,”
Nat. Biotechnol.
,
30
(
8
), pp.
792
797
.
14.
Bartlett
,
N. W.
,
Tolley
,
M. T.
,
Overvelde
,
J. T.
,
Weaver
,
J. C.
,
Mosadegh
,
B.
,
Bertoldi
,
K.
,
Whitesides
,
G. M.
, and
Wood
,
R. J.
,
2015
, “
A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion
,”
Science
,
349
(
6244
), pp.
161
165
.
15.
Park
,
S.-J.
,
Gazzola
,
M.
,
Park
,
K. S.
,
Park
,
S.
,
Di Santo
,
V.
,
Blevins
,
E. L.
,
Lind
,
J. U.
,
Campbell
,
P. H.
,
Dauth
,
S.
,
Capulli
,
A. K.
,
Pasqualini
,
F. S.
,
Ahn
,
S.
,
Cho
,
A.
,
Yuan
,
H.
,
Maoz
,
B. M.
,
Vijaykumar
,
R.
,
Choi
,
J. W.
,
Deisseroth
,
K.
,
Lauder
,
G. V.
,
Mahadevan
,
L.
, and
Parker
,
K. K.
,
2016
, “
Phototactic Guidance of a Tissue-Engineered Soft-Robotic Ray
,”
Science
,
353
(
6295
), pp.
158
162
.
16.
Rogers
,
J.
,
Huang
,
Y.
,
Schmidt
,
O. G.
, and
Gracias
,
D. H.
,
2016
, “
Origami MEMS and NEMS
,”
MRS Bull.
,
41
(
2
), pp.
123
129
.
17.
Liu
,
Y.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2016
, “
2D or Not 2D”: Shape-Programming Polymer Sheets
,”
Prog. Polym. Sci.
,
52
, pp.
79
106
.
18.
Zou
,
H.-X.
,
Zhang
,
W.-M.
,
Wei
,
K.-X.
,
Li
,
W.-B.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2016
, “
A Compressive-Mode Wideband Vibration Energy Harvester Using a Combination of Bistable and Flextensional Mechanisms
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121005
.
19.
Li
,
W.
,
Torres
,
D.
,
Díaz
,
R.
,
Wang
,
Z.
,
Wu
,
C.
,
Wang
,
C.
,
Wang
,
Z. L.
, and
Sepúlveda
,
N.
,
2017
, “
Nanogenerator-Based Dual-Functional and Self-Powered Thin Patch Loudspeaker or Microphone for Flexible Electronics
,”
Nat. Commun.
,
8
, p.
15310
.
20.
Bao
,
S.
,
Wang
,
S.
, and
Wang
,
B.
,
2017
, “
An Improved Fourier–Ritz Method for Analyzing in-Plane Free Vibration of Sectorial Plates
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091001
.
21.
Yuan
,
J.
,
Wei
,
X.
, and
Huang
,
Y.
,
2017
, “
Exact Solutions for Nonaxisymmetric Vibrations of Radially Inhomogeneous Circular Mindlin Plates With Variable Thickness
,”
ASME J. Appl. Mech.
,
84
(
7
), p.
071003
.
22.
Li
,
D.
,
Zheng
,
Z. L.
, and
Todd
,
M. D.
,
2018
, “
Nonlinear Vibration of Orthotropic Rectangular Membrane Structures Including Modal Coupling
,”
ASME J. Appl. Mech.
,
85
(
6
), p.
061004
.
23.
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Vibration of Flexible Structures Under Nonlinear Boundary Conditions
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111006
.
24.
Wang
,
H.
,
Ning
,
X.
,
Li
,
H.
,
Luan
,
H.
,
Xue
,
Y.
,
Yu
,
X.
,
Fan
,
Z.
,
Li
,
L.
,
Rogers
,
J. A.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2018
, “
Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling
,”
J. Mech. Phys. Solids
,
112
, pp.
187
208
.
25.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
,
A.
,
Liu
,
Y.
,
Xiao
,
D.
,
Zhou
,
G.
,
Lee
,
J.
,
Chung
,
H. U.
,
Cheng
,
H.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X.
,
Paik
,
U.
,
Nuzzo
,
R. G.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
26.
Zhang
,
Y.
,
Yan
,
Z.
,
Nan
,
K.
,
Xiao
,
D.
,
Liu
,
Y.
,
Luan
,
H.
,
Fu
,
H.
,
Wang
,
X.
,
Yang
,
Q.
,
Wang
,
J.
,
Ren
,
W.
,
Si
,
H.
,
Liu
,
F.
,
Yang
,
L.
,
Li
,
H.
,
Wang
,
J.
,
Guo
,
X.
,
Luo
,
H.
,
Wang
,
L.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci.
,
112
(
38
), pp.
11757
11764
.
27.
Fu
,
H.
,
Nan
,
K.
,
Bai
,
W.
,
Huang
,
W.
,
Bai
,
K.
,
Lu
,
L.
,
Zhou
,
C.
,
Liu
,
Y.
,
Liu
,
F.
,
Wang
,
J.
,
Han
,
M.
,
Yan
,
Z.
,
Luan
,
H.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Zhao
,
J.
,
Cheng
,
X.
,
Li
,
M.
,
Lee
,
J. W.
,
Liu
,
Y.
,
Fang
,
D.
,
Li
,
X.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2018
, “
Morphable 3D Mesostructures and Microelectronic Devices by Multistable Buckling Mechanics
,”
Nat. Mater.
,
17
(
3
), pp.
268
276
.
28.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M.
,
Ou
,
D.
,
Liu
,
Y.
,
Lin
,
Q.
,
Guo
,
X.
,
Fu
,
H.
,
Xie
,
Z.
,
Gao
,
M.
,
Huang
,
Y.
,
Kim
,
J. H.
,
Qiu
,
Y.
,
Nan
,
K.
,
Kim
,
J.
,
Gutruf
,
P.
,
Luo
,
H.
,
Zhao
,
A.
,
Hwang
,
K. C.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Mechanical Assembly of Complex, 3D Mesostructures From Releasable Multilayers of Advanced Materials
,”
Sci. Adv.
,
2
(
9
), p.
e1601014
.
29.
Zhang
,
Y.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials
,”
Nat. Rev. Mater.
,
2
(
4
), p.
17019
.
30.
Danielson
,
C.
,
Mehrnezhad
,
A.
,
YekrangSafakar
,
A.
, and
Park
,
K.
,
2017
, “
Fabrication and Characterization of Self-Folding Thermoplastic Sheets Using Unbalanced Thermal Shrinkage
,”
Soft Matter
,
13
(
23
), pp.
4224
4230
.
31.
Bauhofer
,
A. A.
,
Krödel
,
S.
,
Rys
,
J.
,
Bilal
,
O. R.
,
Constantinescu
,
A.
, and
Daraio
,
C.
,
2017
, “
Harnessing Photochemical Shrinkage in Direct Laser Writing for Shape Morphing of Polymer Sheets
,”
Adv. Mater.
,
29
(
42
), p.
1703024
.
32.
Cools
,
J.
,
Jin
,
Q.
,
Yoon
,
E.
,
Burbano
,
D. A.
,
Luo
,
Z.
,
Cuypers
,
D.
,
Callewaert
,
G.
,
Braeken
,
D.
, and
Gracias
,
D. H.
,
2018
, “
A Micropatterned Multielectrode Shell for 3D Spatiotemporal Recording From Live Cells
,”
Adv. Sci.
,
5
(
4
), p.
1700731
.
33.
Zhao
,
R.
, and
Zhao
,
X.
,
2017
, “
Multimodal Surface Instabilities in Curved Film–Substrate Structures
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081001
.
34.
Auguste
,
A.
,
Jin
,
L.
,
Suo
,
Z.
, and
Hayward
,
R. C.
,
2017
, “
Post-Wrinkle Bifurcations in Elastic Bilayers With Modest Contrast in Modulus
,”
Extreme Mech. Lett.
,
11
, pp.
30
36
.
35.
Liao
,
X.
,
Xiao
,
J.
,
Ni
,
Y.
,
Li
,
C.
, and
Chen
,
X.
,
2017
, “
Self-Assembly of Islands on Spherical Substrates by Surface Instability
,”
ACS Nano
,
11
(
3
), pp.
2611
2617
.
36.
Vinay
,
T. V.
,
Banuprasad
,
T. N.
,
George
,
S. D.
,
Varghese
,
S.
, and
Varanakkottu
,
S. N.
,
2017
, “
Additive‐Free Tunable Transport and Assembly of Floating Objects at Water‐Air Interface Using Bubble‐Mediated Capillary Forces
,”
Adv. Mater. Interfaces
,
4
(
7
), p.
1601231
.
37.
Hure
,
J.
, and
Audoly
,
B.
,
2013
, “
Capillary Buckling of a Thin Film Adhering to a Sphere
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
450
471
.
38.
Brubaker
,
N.
, and
Lega
,
J.
,
2016
, “
Capillary-Induced Deformations of a Thin Elastic Sheet
,”
Philos. Trans. R. Soc. London A
,
374
(
2066
), p.
20150169
.
39.
Liu
,
C.
,
Schauff
,
J.
,
Joung
,
D.
, and
Cho
,
J. H.
,
2017
, “
Remotely Controlled Microscale 3D Self‐Assembly Using Microwave Energy
,”
Adv. Mater. Technol.
,
2
(
8
), p. 1700035.
40.
Cui
,
J.
,
Yao
,
S.
,
Huang
,
Q.
,
Adams
,
J. G.
, and
Zhu
,
Y.
,
2017
, “
Controlling the Self-Folding of a Polymer Sheet Using a Local Heater: The Effect of the Polymer–Heater Interface
,”
Soft Matter
,
13
(
21
), pp.
3863
3870
.
41.
Xiuting
,
S.
,
Zhang
,
S.
,
Xu
,
J.
, and
Wang
,
F.
,
2018
, “
Dynamical Analysis and Realization of an Adaptive Isolator
,”
ASME J. Appl. Mech.
,
85
(
1
), p.
011002
.
42.
Eichler
,
A.
,
Moser
,
J.
,
Chaste
,
J.
,
Zdrojek
,
M.
,
Wilson-Rae
,
I.
, and
Bachtold
,
A.
,
2011
, “
Nonlinear Damping in Mechanical Resonators Made From Carbon Nanotubes and Graphene
,”
Nat. Nanotechnol.
,
6
(
6
), pp.
339
342
.
43.
Unterreithmeier
,
Q. P.
,
Faust
,
T.
, and
Kotthaus
,
J. P.
,
2010
, “
Damping of Nanomechanical Resonators
,”
Phys. Rev. Lett.
,
105
(
2
), p.
027205
.
44.
Louhghalam
,
A.
,
Pellenq
,
R. J.-M.
, and
Ulm
,
F.-J.
,
2018
, “
Thermalizing and Damping in Structural Dynamics
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081001
.
45.
Sun
,
T. L.
,
Kurokawa
,
T.
,
Kuroda
,
S.
,
Ihsan
,
A. B.
,
Akasaki
,
T.
,
Sato
,
K.
,
Haque
,
M. A.
,
Nakajima
,
T.
, and
Gong
,
J. P.
,
2013
, “
Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity
,”
Nat. Mater.
,
12
(
10
), pp.
932
937
.
46.
Khan
,
A. S.
,
Lopez-Pamies
,
O.
, and
Kazmi
,
R.
,
2006
, “
Thermo-Mechanical Large Deformation Response and Constitutive Modeling of Viscoelastic Polymers Over a Wide Range of Strain Rates and Temperatures
,”
Int. J. Plasticity
,
22
(
4
), pp.
581
601
.
47.
Bauer
,
F.
,
Denneler
,
S.
, and
Willert-Porada
,
M.
,
2005
, “
Influence of Temperature and Humidity on the Mechanical Properties of Nafion® 117 Polymer Electrolyte Membrane
,”
J. Polym. Sci. Part B: Polym. Phys.
,
43
(
7
), pp.
786
795
.
48.
Kim
,
B.
,
Hopcroft
,
M. A.
,
Candler
,
R. N.
,
Jha
,
C. M.
,
Agarwal
,
M.
,
Melamud
,
R.
,
Chandorkar
,
S. A.
,
Yama
,
G.
, and
Kenny
,
T. W.
,
2008
, “
Temperature Dependence of Quality Factor in MEMS Resonators
,”
J. Microelectromech. Syst.
,
17
(
3
), pp.
755
766
.
49.
Chung
,
S.
, and
Park
,
S.
,
2013
, “
Effects of Temperature on Mechanical Properties of SU-8 Photoresist Material
,”
J. Mech. Sci. Technol.
,
27
(
9
), pp.
2701
2707
.
50.
Towler
,
B. W.
,
Rupp
,
C. J.
,
Cunningham
,
A. B.
, and
Stoodley
,
P.
,
2003
, “
Viscoelastic Properties of a Mixed Culture Biofilm From Rheometer Creep Analysis
,”
Biofouling
,
19
(
5
), pp.
279
285
.
51.
Lu
,
B.
,
Lamnawar
,
K.
,
Maazouz
,
A.
, and
Zhang
,
H.
,
2016
, “
Revealing the Dynamic Heterogeneity of PMMA/PVDF Blends: From Microscopic Dynamics to Macroscopic Properties
,”
Soft Matter
,
12
(
13
), pp.
3252
3264
.
52.
Wouters
,
K.
,
Gijsenbergh
,
P.
, and
Puers
,
R.
,
2011
, “
Comparison of Methods for the Mechanical Characterization of Polymers for MEMS Applications
,”
J. Micromech. Microeng.
,
21
(
11
), p.
115027
.
53.
Schiffmann
,
K. I.
, and
Brill
,
C.
,
2007
, “
Testing the Viscoelastic Properties of SU8 Photo Resist Thin Films at Different Stages of Processing by Nanoindentation Creep and Stress Relaxation
,”
Int. J. Mater. Res.
,
98
(
5
), pp.
397
403
.
54.
Xu
,
T.
,
Yoo
,
J. H.
,
Babu
,
S.
,
Roy
,
S.
,
Lee
,
J.-B.
, and
Lu
,
H.
,
2016
, “
Characterization of the Mechanical Behavior of SU-8 at Microscale by Viscoelastic Analysis
,”
J. Micromech. Microeng.
,
26
(
10
), p.
105001
.
55.
VanLandingham
,
M. R.
,
Chang
,
N. K.
,
Drzal
,
P.
,
White
,
C. C.
, and
Chang
,
S. H.
,
2005
, “
Viscoelastic Characterization of Polymers Using Instrumented Indentation—Part I: Quasi‐Static Testing
,”
J. Polym. Sci. Part B: Polym. Phys.
,
43
(
14
), pp.
1794
1811
.
56.
Jandak
,
M.
,
Neuzil
,
T.
,
Schneider
,
M.
, and
Schmid
,
U.
,
2016
, “
Investigation on Different Damping Mechanisms on the Q Factor of MEMS Resonators
,”
Procedia Eng.
,
168
, pp.
929
932
.
57.
Torvik
,
P. J.
,
2011
, “
On Estimating System Damping From Frequency Response Bandwidths
,”
J. Sound Vib.
,
330
(
25
), pp.
6088
6097
.
58.
Fang
,
X.
,
Chuang
,
K.-C.
,
Jin
,
X.
, and
Huang
,
Z.
,
2018
, “
Band-Gap Properties of Elastic Metamaterials With Inerter-Based Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071010
.
59.
Marynowski
,
K.
,
2002
, “
Non-Linear Dynamic Analysis of an Axialy Moving Viscoelastic Beam
,”
J. Theor. Appl. Mech.
,
40
(
2
), pp.
465
482
.http://ptmts.org.pl/jtam/index.php/jtam/article/view/v40n2p465/672
60.
Arefi
,
M.
, and
Zenkour
,
A. M.
,
2017
, “
Nonlocal Electro-Thermo-Mechanical Analysis of a Sandwich Nanoplate Containing a Kelvin–Voigt Viscoelastic Nanoplate and Two Piezoelectric Layers
,”
Acta Mech.
,
228
(
2
), pp.
475
493
.
61.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2011
, “
The Analysis of the Impact Response of a Thin Plate Via Fractional Derivative Standard Linear Solid Model
,”
J. Sound Vib.
,
330
(
9
), pp.
1985
2003
.
62.
Ghayesh
,
M. H.
,
2012
, “
Nonlinear Dynamic Response of a Simply-Supported Kelvin–Voigt Viscoelastic Beam, Additionally Supported by a Nonlinear Spring
,”
Nonlinear Anal.: Real World Appl.
,
13
(
3
), pp.
1319
1333
.
63.
Mahmoodi
,
S. N.
,
Jalili
,
N.
, and
Khadem
,
S. E.
,
2008
, “
An Experimental Investigation of Nonlinear Vibration and Frequency Response Analysis of Cantilever Viscoelastic Beams
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1409
1419
.
64.
Kolahchi
,
R.
,
2017
, “
A Comparative Study on the Bending, Vibration and Buckling of Viscoelastic Sandwich Nano-Plates Based on Different Nonlocal Theories Using DC, HDQ and DQ Methods
,”
Aerosp. Sci. Technol.
,
66
, pp.
235
248
.
65.
Tseng
,
W.-Y.
, and
Dugundji
,
J.
,
1971
, “
Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
467
476
.
66.
Cottone
,
F.
,
Gammaitoni
,
L.
,
Vocca
,
H.
,
Ferrari
,
M.
, and
Ferrari
,
V.
,
2012
, “
Piezoelectric Buckled Beams for Random Vibration Energy Harvesting
,”
Smart Mater. Struct.
,
21
(
3
), p.
035021
.
67.
Yan
,
Z.
,
Han
,
M.
,
Shi
,
Y.
,
Badea
,
A.
,
Yang
,
Y.
,
Kulkarni
,
A.
,
Hanson
,
E.
,
Kandel
,
M. E.
,
Wen
,
X.
,
Zhang
,
F.
,
Luo
,
Y.
,
Lin
,
Q.
,
Zhang
,
H.
,
Guo
,
X.
,
Huang
,
Y.
,
Nan
,
K.
,
Jia
,
S.
,
Oraham
,
A. W.
,
Mevis
,
M. B.
,
Lim
,
J.
,
Guo
,
X.
,
Gao
,
M.
,
Ryu
,
W.
,
Yu
,
K. J.
,
Nicolau
,
B. G.
,
Petronico
,
A.
,
Rubakjin
,
S. S.
,
Lou
,
J.
,
Ajayan
,
P. M.
,
Thornton
,
K.
,
Popescu
,
G.
,
Fang
,
D.
,
Sweedler
,
J. V.
,
Braun
,
P. V.
,
Zhang
,
H.
,
Nuzzo
,
R. G.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Three-Dimensional Mesostructures as High-Temperature Growth Templates, Electronic Cellular Scaffolds, and Self-Propelled Microrobots
,”
Proc. Natl. Acad. Sci.
,
114
(
45
), pp.
E9455
E9464
.
68.
Su
,
Y.
,
Wu
,
J.
,
Fan
,
Z.
,
Hwang
,
K.-C.
,
Song
,
J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Postbuckling Analysis and Its Application to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
487
508
.
69.
Fan
,
Z.
,
Zhang
,
Y.
,
Ma
,
Q.
,
Zhang
,
F.
,
Fu
,
H.
,
Hwang
,
K.-C.
, and
Huang
,
Y.
,
2016
, “
A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics
,”
Int. J. Solids Struct.
,
91
, pp.
46
54
.
70.
Fan
,
Z.
,
Wu
,
J.
,
Ma
,
Q.
,
Liu
,
Y.
,
Su
,
Y.
, and
Hwang
,
K.-C.
,
2017
, “
Post-Buckling Analysis of Curved Beams
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
031007
.
71.
Fan
,
Z.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Double Perturbation Method of Postbuckling Analysis in 2D Curved Beams for Assembly of 3D Ribbon-Shaped Structures
,”
J. Mech. Phys. Solids
,
111
, pp.
215
238
.
72.
Ko
,
H. C.
,
Shin
,
G.
,
Wang
,
S.
,
Stoykovich
,
M. P.
,
Lee
,
J. W.
,
Kim
,
D. H.
,
Ha
,
J. S.
,
Huang
,
Y.
,
Hwang
,
K. C.
, and
Rogers
,
J. A.
,
2009
, “
Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements
,”
Small
,
5
(
23
), pp.
2703
2709
.
73.
Zhu
,
L.
, and
Chen
,
X.
,
2017
, “
Delamination-Based Measurement and Prediction of the Adhesion Energy of Thin Film/Substrate Interfaces
,”
J. Eng. Mater. Technol.
,
139
(
2
), p.
021021
.
74.
Şimşek
,
M.
, and
Kocatürk
,
T.
,
2009
, “
Nonlinear Dynamic Analysis of an Eccentrically Prestressed Damped Beam Under a Concentrated Moving Harmonic Load
,”
J. Sound Vib.
,
320
(
1–2
), pp.
235
253
.
75.
Schoeberle
,
B.
,
Wendlandt
,
M.
, and
Hierold
,
C.
,
2008
, “
Long-Term Creep Behavior of SU-8 Membranes: Application of the Time–Stress Superposition Principle to Determine the Master Creep Compliance Curve
,”
Sens. Actuators A: Phys.
,
142
(
1
), pp.
242
249
.
76.
Banks
,
H. T.
, and
Inman
,
D.
,
1991
, “
On Damping Mechanisms in Beams
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
716
723
.
You do not currently have access to this content.