The linear theory of dual-porosity and dual-permeability poro-chemo-electro-elasticity is presented. The theory outlines the dual-continuum formulation of multiple coupled processes involving solid deformation, pore fluid flow, and electrically charged species transport, within and in between two coexisting porosity systems of a fluid-saturated, poro-elastic medium. The described formulation is used to derive the analytical solutions to the inclined wellbore problem and axisymmetric Mandel-Type problem of dual-porosity, dual-permeability poro-chemo-electro-elasticity. The effects of chemical and electrical potentials on the distributions of stress and pore pressure are demonstrated by numerical examples pertaining to the considered problems. It is shown that the fully coupled nature of the solutions rigorously captures the seemingly anomalous time variations of the effective stress as driven by the pore fluid pressure disturbances, as well as the distribution and movement of anions/cations within the dual-porosity porous medium. The existing subset of published solutions on the subject is successfully reproduced as special cases of the solutions presented in this paper.

References

References
1.
Yeung
,
A.
, and
Mitchell
,
J.
,
1993
, “
Coupled Fluid, Electrical and Chemical Flows in Soil
,”
Geotechnique
,
43
(
1
), pp.
121
134
.
2.
Huyghe
,
J.
, and
Janssen
,
J.
,
1999
, “
Thermo-Chemo- Eletro-Mechanical Formulation of Saturated Charged Porous Solids
,”
Transp. Porous Media
,
34
(
2
), pp.
129
141
.
3.
Heidug
,
W.
, and
Wong
,
S.
,
1996
, “
Hydration Swelling of Water-Absorbing Rocks: A Constitutive Model
,”
Int. J. Numer. Anal. Methods Geomech.
,
20
(
6
), pp.
403
430
.
4.
Huyghe
,
J.
,
2007
, “
Analytical Solution of a Pressure Transmission Experiment on Shale Using Electrochemomechanical Theory
,”
J. Eng. Mech.
,
133
(
9
), pp.
994
1002
.
5.
Ewy
,
R. T.
, and
Stankovic
,
R. J.
,
2010
, “
Shale Swelling, Osmosis, and Acoustic Changes Measured Under Simulated Downhole Conditions
,”
SPE Drill. Completion
,
25
(
2
), pp.
177
186
.
6.
Tran
,
M.
, and
Abousleiman
,
Y.
,
2013
, “
Anisotropic Porochemoelectroelastic Mandel's Problem Solutions for Applications in Reservoir Modeling and Laboratory Characterization
,”
Mech. Res. Commun.
,
47
, pp.
89
96
.
7.
Lang
,
G.
,
Stewart
,
P.
,
Vella
,
D.
,
Waters
,
S.
, and
Goriely
,
A.
,
2014
, “
Is the Donnan Effect Sufficient to Explain Swelling in Brain Tissue Slices?
,”
J. R. Soc. Interface
,
11
(
96
), p.
20140123
.
8.
Medved
,
I.
, and
Černý
,
R.
,
2013
, “
Osmosis in Porous Media: A Review of Recent Studies
,”
Microporous Mesoporous Mater.
,
170
, pp.
299
317
.
9.
Ewy
,
R. T.
,
2014
, “
Shale Swelling/Shrinkage and Water Content Change Due to Imposed Suction and Due to Direct Brine Contact
,”
Acta Geotechnica
,
9
(
5
), pp.
869
886
.
10.
Biot
,
M.
,
1941
, “
General Theory of Three Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.
11.
Bowen
,
R.
,
1982
, “
Compressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
,
20
(
6
), pp.
697
735
.
12.
Coussy
,
O.
,
Dormieux
,
L.
, and
Detournay
,
E.
,
1998
, “
From Mixture Theory to Biot's Approach for Porous Media
,”
Int. J. Solids Struct.
,
35
(
34–35
), pp.
4619
4635
.
13.
Dormieux
,
L.
,
Kondo
,
D.
, and
Ulm
,
F.-J.
,
2006
,
Microporomechanics
,
Wiley
, Chichester, UK.
14.
Cheng
,
A.
,
2016
,
Poroelasticity
,
Springer International Publishing
, Basel,
Switzerland
.
15.
Anand
,
L.
,
2015
, “
2014 Drucker Medal Paper: A Derivation of the Theory of Linear Poroelasticity From Chemoelasticity
,”
ASME J. Appl. Mech.
,
82
(
11
), p.
111005
.
16.
Nguyen
,
V.
, and
Abousleiman
,
Y.
,
2010
, “
Incorporating Electrokinetic Effects in the Porochemoelastic Inclined Wellbore Formulation and Solution
,”
An. Acad. Bras. Ciênc.
,
8
, pp.
195
222
.
17.
Bunger
,
A.
,
Sarout
,
J.
,
Kear
,
J.
,
Piane
,
C.
,
Detournay
,
E.
,
Josh
,
M.
, and
Dewhurst
,
D.
,
2014
, “
Experimental Chemoporoelastic Characterization of Shale Using Millimeter-Scale Specimens
,”
J. Petro. Sci. Eng.
,
118
(
8
), pp.
40
51
.
18.
Abousleiman
,
Y.
,
Liu
,
C.
, and
Hoang
,
S.
,
2013
, “
Poromechanics Axisymmetric Mandel-Type Solutions and Pore Pressure Intricate Behaviors in Dual-Porosity Dual-Permeability Shale
,”
Fifth Biot Conference on Poromechanics
, Vienna, Austria, July 10–12, pp.
2451
2460
.
19.
Liu
,
C.
,
Hoang
,
S.
,
Tran
,
M.
,
Abousleiman
,
Y.
, and
Ewy
,
R.
,
2017
, “
Poroelastic Dual-Porosity Dual-Permeability Simulation of Pressure Transmission Test on Chemically Active Shale
,”
J. Eng. Mech.
,
143
(
6
), p.
04017016
.
20.
Liu
,
C.
, and
Abousleiman
,
Y.
,
2017
, “
Shale Dual-Porosity Dual-Permeability Poromechanical and Chemical Properties Extracted From Experimental Pressure Transmission Test
,”
J. Eng. Mech.
,
143
(
6
), p.
04017107
.
21.
Tran
,
M.
, and
Abousleiman
,
Y.
,
2013
, “
Anisotropic Porochemoelectroelastic Solution for an Inclined Wellbore Drilled in Shale
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
020912
.
22.
Cowin
,
S.
,
Gailani
,
G.
, and
Benalla
,
M.
,
2009
, “
Hierarchical Poroelasticity: Movement of Interstitial Fluid Between Porosity Levels in Bones
,”
Phil. Trans. R. Soc.
,
367
(67, pp.
3401
3444
.
23.
Barenblatt
,
G.
,
Zheltov
,
I.
, and
Kochina
,
I.
,
1960
, “
Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata]
,”
J. Appl. Math. Mech.
,
24
(
5
), pp.
1286
1303
.
24.
Beskos
,
D.
, and
Aifantis
,
E.
,
1986
, “
On the Theory of Consolidation With Double Porosity-II
,”
Int. J. Eng. Sci.
,
24
(
11
), pp.
1697
1716
.
25.
Wilson
,
R.
, and
Aifantis
,
E.
,
1982
, “
On the Theory of Consolidation With Double Porosity
,”
Int. J. Eng. Sci.
,
20
, pp.
1009
1035
.
26.
Mehrabian
,
A.
, and
Abousleiman
,
Y.
,
2014
, “
Generalized Biot's Theory and Mandel's Problem of Multiple-Porosity and Multiple-Permeability Poroelasticity
,”
J. Geophys. Res.: Solid Earth
,
119
(
4
), pp.
2745
2763
.
27.
Mehrabian
,
A.
, and
Abousleiman
,
Y.
,
2015
, “
Gassmann Equations and the Constitutive Relations for Multiple-Porosity and Multiple-Permeability Poroelasticity With Applications to Oil and Gas Shale
,”
Int. J. Numer. Anal. Meth. Geomech.
,
39
(14), pp.
1547
1569
.
28.
Mehrabian
,
A.
, and
Abousleiman
,
Y.
,
2018
, “
Theory and Analytical Solution to Cryer's Problem of N-Porosity and N-Permeability Poroelasticity
,”
J. Mech. Phys. Solids
,
118
(18), pp.
218
227
.
29.
Liu
,
C.
, and
Abousleiman
,
Y.
,
2018
, “
Multiporosity/Multipermeability Inclined-Wellbore Solutions With Mudcake Effects
,”
SPE J.
(preprint).
30.
Carter
,
P.
, and
Booker
,
R.
,
1982
, “
Elastic Consolidation Around a Deep Circular Tunnel
,”
Int. J. Solids Struct.
,
18
(
12
), pp.
1059
1074
.
31.
Detournay
,
E.
, and
Cheng
,
A. H.-D.
,
1988
, “
Poroelastic Response of a Borehole in a Non-Hydrostatic Stress Field
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
2
(
3
), pp.
171
182
.
32.
Cui
,
L.
,
Cheng
,
A.
, and
Abousleiman
,
Y.
,
1997
, “
Poroelastic Solution for an Inclined Borehole
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
32
38
.
33.
Abousleiman
,
Y.
, and
Cui
,
L.
,
1998
, “
Poroelastic Solutions in Transversely Isotropic Media for Wellbore and Cylinder
,”
Int. J. Solids Struct.
,
35
(
34–35
), pp.
4905
4929
.
34.
Ekbote
,
S.
,
Abousleiman
,
Y.
, and
Zaman
,
M.
,
2004
, “
Analyses of Inclined Boreholes in Poroelastic Media
,”
Int. J. Geomech.
,
4
(
3
), pp.
178
190
.
35.
Mehrabian
,
A.
, and
Abousleiman
,
Y.
,
2013
, “
Generalized Poroelastic Wellbore Problem
,”
Int. J. Numer. Anal. Methods Geomech.
,
37
(
16
), pp.
2727
2754
.
36.
Sherwood
,
J.
, and
Bailey
,
L.
,
1994
, “
Swelling Shale Around a Cylindrical Wellbore
,”
Proc. R. Soc. London A
,
44
(44), pp.
161
184
.
37.
Ekbote
,
S.
, and
Abousleiman
,
Y.
,
2005
, “
Porochemothermoelastic Solution for an Inclined Borehole in a Transversely Isotropic Formation
,”
J. Eng. Mech.
,
131
(
5
), pp.
522
533
.
38.
Ekbote
,
S.
, and
Abousleiman
,
Y.
,
2006
, “
Porochemoelastic Solution for an Inclined Borehole in a Transversely Isotropic Formation
,”
J. Eng. Mech.
,
132
(
7
), pp.
754
763
.
39.
Li
,
X.
,
2003
, “
Consolidation Around a Borehole Embedded in Media With Double Porosity Under Release of Geostatic Stresses
,”
Mech. Res. Commun.
,
30
, pp.
95
100
.
40.
Abousleiman
,
Y.
, and
Nguyen
,
V.
,
2005
, “
Poromechanics Response of Inclined Wellbore Geometry in Fractured Porous Media
,”
J. Eng. Mech.
,
131
(
11
), pp.
1170
1183
.
41.
Nguyen
,
V.
, and
Abousleiman
,
Y.
,
2009
, “
Poromechanics Response of Inclined Wellbore Geometry in Chemically Active Fractured Porous Media
,”
J. Eng. Mech.
,
135
(
11
), pp.
1281
1294
.
42.
Armstrong
,
C.
,
Lar
,
W.
, and
Mow
,
V.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.
43.
Abousleiman
,
Y.
,
Cheng
,
A.
,
Cui
,
L.
,
Detournay
,
E.
, and
Roegiers
,
J.-C.
,
1996
, “
Mandel's Problem Revisited
,”
Geotechnique
,
46
(
2
), pp.
187
195
.
44.
Cui
,
L.
, and
Abousleiman
,
Y.
,
2001
, “
Time-Dependent Poromechanical Responses of Saturated Cylinders
,”
J. Eng. Mech.
,
127
(
4
), pp.
391
398
.
45.
Sawaguchi
,
H.
, and
Kurashige
,
M.
,
2005
, “
Constant Strain-Rate Compression Test of a Fluid-Saturated Poroelastic Sample With Positive or Negative Poisson's Ratio
,”
Acta Mech.
,
179
(
3–4
), pp.
145
156
.
46.
Nguyen
,
V.
, and
Abousleiman
,
Y.
,
2010
, “
Poromechanics Solutions to Plane Strain and Axisymmetric Mandel-Type Problems in Dual-Porosity and Dual-Permeability Medium
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011002
.
47.
Bunger
,
A.
,
2010
, “
The Mandel-Cryer Effect in Chemoporoelasticity
,”
Int. J. Numer. Anal. Methods Geomech.
,
34
(
14
), pp.
1479
1511
.
48.
Aifantis
,
E.
,
1977
, “
Introducing a Multi-Porous Medium
,”
Dev. Mech.
,
8
, pp.
209
211
.
49.
Katchalsky
,
A.
, and
Curran
,
P.
,
1967
,
Nonequilibrium Thermodynamics in Biophysics
,
Harvard University Press
,
Cambridge, MA
.
50.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes—I
,”
Phys. Rev.
,
37
(
4
), pp.
405
426
.
51.
Coussy
,
O.
,
2004
,
Poromechanics
,
Wiley
, Chichester, UK.
52.
Sachs
,
J.
, and
Grodinsky
,
A.
,
1987
, “
An Electromechanically Coupled Poroelastic Medium Driven by an Applied Electrical Current: Surface Detection of Bulk Material Parameters
,”
Phys. Chem. Hydrodyn.
,
11
(
4
), pp.
585
614
.
53.
Corapcioglu
,
Y.
,
1991
, “
Formulation of Electro-Chemico-Osmotic Processes in Soils
,”
Transp. Porous Media
,
6
(
4
), pp.
435
444
.
54.
Mitchell
,
J.
,
1993
,
Fundamentals of Soil Behavior
,
Wiley
,
New York
.
55.
Gonçalvès
,
J.
,
Rousseau-Gueutin
,
P.
,
de Marsily
,
G.
,
Cosenza
,
P.
, and
Violette
,
S.
,
2010
, “
What is the Significance of Pore Pressure in a Saturated Shale Layer?
,”
Water Resour. Res.
,
46
(4), p.
W04514
.
56.
Overbeek
,
J.
,
1956
, “
The Donnan Equilibrium
,”
Prog. Biophys.
,
6
, pp.
57
84
.
57.
Carroll
,
D.
,
1959
, “
Ion Exchange in Clays and Other Minerals
,”
Bull. Geol. Soc. Am.
,
7
, pp.
749
780
.
58.
Hang
,
P.
, and
Brindley
,
G.
,
1970
, “
Methylene Blue Absorption by Clay Minerals. Determination of Surface Areas and Cation Exchange Capacities
,”
Clays Clay Miner.
,
18
, pp.
203
212
.
59.
Hiramatsu
,
Y.
, and
Oka
,
Y.
,
1962
, “
Stress Around a Shaft or Level Excavated in Ground With a Three-Dimensional Stress State
,”
Mem. Frac. Eng. Kyotu Univ.
,
24
, pp.
56
76
.
You do not currently have access to this content.