In this paper, an acoustomechanical constitutive model is developed to describe the heating effect of a tissue-mimicking gel by cavitation in exposure to high-intensity focused ultrasound (HIFU). An internal variable, representing the evolution of cavitation process, is introduced into the Helmholtz free energy under the framework of thermodynamics that combines the acoustic radiation stress theory and the nonlinear elasticity theory together. Thus, the internal variable is related to the cavitation process and the mechanical energy dissipation of a tissue-mimicking gel from a macroscopic viewpoint. Since the temperature rise of cavitation phenomenon is more remarkable than that of heating waves, the temperature inside the tissue-mimicking gel rises rapidly mainly due to large amounts of cavitation bubbles. This phenomenon can be quantitatively described by the present model, which fits the existing experimental data well.

References

1.
Hill
,
C. R.
,
Bamber
,
J. C.
, and
Ter Haar
,
G.
,
2004
,
Physical Principles of Medical Ultrasonics
,
Wiley
, New York.
2.
Kennedy
,
J. E.
,
2005
, “
High-Intensity Focused Ultrasound in the Treatment of Solid Tumours
,”
Nat. Rev. Cancer
,
5
(
4
), pp.
321
327
.
3.
Khokhlova
,
V. A.
,
Bailey
,
M. R.
,
Reed
,
J. A.
,
Cunitz
,
B. W.
,
Kaczkowski
,
P. J.
, and
Crum
,
L. A.
,
2006
, “
Effects of Nonlinear Propagation, Cavitation, and Boiling in Lesion Formation by High Intensity Focused Ultrasound in a Gel Phantom
,”
J. Acoust. Soc. Am.
,
119
(
3
), p.
1834
.
4.
Perelomova
,
A.
,
2004
, “
Heat Generation by Impulse Ultrasound
,”
Ultrasonics
,
43
(
2
), pp.
95
100
.
5.
Rayleigh
,
L.
,
1902
, “
XXXIV. On the Pressure of Vibrations
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
3
(
15
), pp.
338
346
.
6.
Rayleigh
,
L.
,
1905
, “
XLII. On the Momentum and Pressure of Gaseous Vibrations, and on the Connexion With the Virial Theorem
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
10
(
57
), pp.
364
374
.
7.
Mishra
,
P.
,
Hill
,
M.
, and
Glynne-Jones
,
P.
,
2014
, “
Deformation of Red Blood Cells Using Acoustic Radiation Forces
,”
Biomicrofluidics
,
8
(
3
), p.
034109
.
8.
Issenmann
,
B.
,
Nicolas
,
A.
,
Wunenburger
,
R.
,
Manneville
,
S.
, and
Delville
,
J.-P.
,
2008
, “
Deformation of Acoustically Transparent Fluid Interfaces by the Acoustic Radiation Pressure
,”
EPL (Europhys. Lett.)
,
83
(
3
), p.
34002
.
9.
Walker
,
W. F.
,
1999
, “
Internal Deformation of a Uniform Elastic Solid by Acoustic Radiation Force
,”
J. Acoust. Soc. Am.
,
105
(
4
), pp.
2508
2518
.
10.
Coussios
,
C. C.
,
Farny
,
C. H.
,
Ter Haar
,
G. T.
, and
Roy
,
R. A.
,
2007
, “
Role of Acoustic Cavitation in the Delivery and Monitoring of Cancer Treatment by High-Intensity Focused Ultrasound (HIFU)
,”
Int. J. Hyperthermia
,
23
(
2
), pp.
105
120
.
11.
Weissler
,
A.
,
1950
, “
Depolymerization by Ultrasonic Irradiation: The Role of Cavitation
,”
J. Appl. Phys.
,
21
(
2
), pp.
171
173
.
12.
Farny
,
C. H.
,
Holt
,
R. G.
, and
Roy
,
R. A.
,
2010
, “
The Correlation Between Bubble-Enhanced HIFU Heating and Cavitation Power
,”
IEEE Trans. Bio-Med. Eng.
,
57
(
1
), pp.
175
184
.
13.
Lafon
,
C.
,
Zderic
,
V.
,
Noble
,
M. L.
,
Yuen
,
J. C.
,
Kaczkowski
,
P. J.
,
Sapozhnikov
,
O. A.
,
Chavrier
,
F.
,
Crum
,
L. A.
, and
Vaezy
,
S.
,
2005
, “
Gel Phantom for Use in High-Intensity Focused Ultrasound Dosimetry
,”
Ultrasound Med. Biol.
,
31
(
10
), pp.
1383
1389
.
14.
Prokop
,
A. F.
,
Vaezy
,
S.
,
Noble
,
M. L.
,
Kaczkowski
,
P. J.
,
Martin
,
R. W.
, and
Crum
,
L. A.
,
2003
, “
Polyacrylamide Gel as an Acoustic Coupling Medium for Focused Ultrasound Therapy
,”
Ultrasound Med. Biol.
,
29
(
9
), pp.
1351
1358
.
15.
Takegami
,
K.
,
Kaneko
,
Y.
,
Watanabe
,
T.
,
Maruyama
,
T.
,
Matsumoto
,
Y.
, and
Nagawa
,
H.
,
2004
, “
Polyacrylamide Gel Containing Egg White as New Model for Irradiation Experiments Using Focused Ultrasound
,”
Ultrasound Med. Biol.
,
30
(
10
), pp.
1419
1422
.
16.
Holt
,
R. G.
, and
Roy
,
R. A.
,
2001
, “
Measurements of Bubble-Enhanced Heating From Focused, MHz-Frequency Ultrasound in a Tissue-Mimicking Material
,”
Ultrasound Med. Biol.
,
27
(
10
), pp.
1399
1412
.
17.
Watkin
,
N. A.
,
ter Haar
,
G. R.
, and
Rivens
,
I.
,
1996
, “
The Intensity Dependence of the Site of Maximal Energy Deposition in Focused Ultrasound Surgery
,”
Ultrasound Med. Biol.
,
22
(
4
), pp.
483
491
.
18.
Xu
,
J.
,
Bigelow
,
T. A.
,
Davis
,
G.
,
Avendano
,
A.
,
Shrotriya
,
P.
,
Bergler
,
K.
, and
Hu
,
Z.
,
2014
, “
Dependence of Ablative Ability of High-Intensity Focused Ultrasound Cavitation-Based Histotripsy on Mechanical Properties of Agar
,”
J. Acoust. Soc. Am.
,
136
(
6
), p.
3018
.
19.
Holt
,
R. G.
,
Roy
,
R. A.
,
Thomas
,
C. R.
,
Farny
,
C.
,
Wu
,
T.
,
Yang
,
X.
, and
Edson
,
P.
,
2006
, “
Therapeutic Bubbles: Basic Principles of Cavitation in Therapeutic Ultrasound
,”
AIP Conf. Proc.
,
829
(
1
), pp.
13
17
.
20.
Watanabe
,
S.
,
Kaneko
,
Y.
,
Takegami
,
K.
,
Maruyama
,
T.
,
Nagawa
,
H.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2006
, “
Relationship Between Thermal Effect and Bubble Behavior in HIFU
,”
AIP Conf. Proc.
,
829
(
1
), pp.
358
362
.
21.
Xin
,
F. X.
, and
Lu
,
T. J.
,
2016
, “
Acoustomechanical Constitutive Theory for Soft Materials
,”
Acta Mech. Sin.
,
32
(
5
), pp.
828
840
.
22.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
85
(
1
), pp.
5
34
.
23.
Beniston
,
M.
,
2004
, “
The 2003 Heat Wave in Europe: A Shape of Things to Come? An Analysis Based on Swiss Climatological Data and Model Simulations
,”
Geophys. Res. Lett.
,
31
(
2
), p. L02202.
24.
Kengne
,
E.
,
Mellal
,
I.
,
Hamouda
,
M. B.
, and
Lakhssassi
,
A.
,
2014
, “
A Mathematical Model to Solve Bio-Heat Transfer Problems Through a Bio-Heat Transfer Equation With Quadratic Temperature-Dependent Blood Perfusion Under a Constant Spatial Heating on Skin Surface
,”
J. Biomed. Sci. Eng.
,
7
(
09
), p.
721
.
25.
Liu
,
X. Z.
,
Zhu
,
Y.
,
Zhang
,
F.
, and
Gong
,
X. F.
,
2013
, “
Estimation of Temperature Elevation Generated by Ultrasonic Irradiation in Biological Tissues Using the Thermal Wave Method
,”
Chin. Phys. B
,
22
(
2
), p.
024301
.
26.
Sun
,
M. K.
,
Shieh
,
J.
,
Chen
,
C. S.
,
Chiang
,
H.
,
Huang
,
C. W.
, and
Chen
,
W. S.
,
2016
, “
Effects of an Implant on Temperature Distribution in Tissue During Ultrasound Diathermy
,”
Ultrason. Sonochem.
,
32
, pp.
44
53
.
27.
Asai
,
A.
,
Okano
,
H.
,
Yoshizawa
,
S.
, and
Umemura
,
S.-I.
,
2013
, “
Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles
,”
Jpn. J. Appl. Phys.
,
52
(
7S
), p.
07HF02
.
28.
Liu
,
K. C.
,
Cheng
,
P. J.
, and
Wang
,
Y. N.
,
2011
, “
Analysis of Non-Fourier Thermal Behaviour for Multi-Layer Skin Model
,”
Therm. Sci.
,
15
(
Suppl. 1
), pp. S61–S67.
29.
Zimberlin
,
J. A.
,
Sanabria-DeLong
,
N.
,
Tew
,
G. N.
, and
Crosby
,
A. J.
,
2007
, “
Cavitation Rheology for Soft Materials
,”
Soft Matter
,
3
(
6
), p.
763
.
30.
Hutchens
,
S. B.
,
Fakhouri
,
S.
, and
Crosby
,
A. J.
,
2016
, “
Elastic Cavitation and Fracture Via Injection
,”
Soft Matter
,
12
(
9
), pp.
2557
2566
.
31.
Holzapfel
,
G.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
West Sussex, UK
.
32.
Xin
,
F. X.
, and
Lu
,
T. J.
,
2016
, “
Generalized Method to Analyze Acoustomechanical Stability of Soft Materials
,”
ASME J. Appl. Mech. Trans.
,
83
(
7
), p. 071004.
33.
Xin
,
F. X.
, and
Lu
,
T. J.
,
2017
, “
A Nonlinear Acoustomechanical Field Theory of Polymeric Gels
,”
Int. J. Solids Struct.
,
112
, pp.
133
142
.
34.
Rajagopal
,
K. R.
,
Srinivasa
,
A. R.
, and
Wineman
,
A. S.
,
2007
, “
On the Shear and Bending of a Degrading Polymer Beam
,”
Int. J. Plasticity
,
23
(
9
), pp.
1618
1636
.
35.
Zhou
,
Y.
, and
Gao
,
X. W.
,
2013
, “
Variations of Bubble Cavitation and Temperature Elevation During Lesion Formation by High-Intensity Focused Ultrasound
,”
J. Acoust. Soc. Am.
,
134
(
2
), pp.
1683
1694
.
You do not currently have access to this content.