This paper presents a detailed study on the fracture behaviors of soft materials with hard inclusion. Stress concentrations on the interfaces of hard and soft materials are considered as the key factor for structure fracture. Based on linear fracture theory, the fracture behaviors of soft materials with elliptical hard inclusion are investigated. Stress concentrations, consisting of tensile, hoop, and compressive stress, are observed with changes of inclusion geometries and the modulus ratio of hard and soft materials. And their influences on the categories of principal stress concentration are shown in a phase diagram in the current paper. Finite element analysis is carried out with consideration of the large deformation of soft material, which demonstrates the effectiveness of the theoretical predictions in a great scope of applied loading. Finally, the predictions based on theoretical and simulation results are validated by experiments. This work points out that the hard line inclusion is the source of danger in soft materials just like the crack in brittle materials.

References

1.
Vacanti
,
J. P.
,
Langer
,
R.
,
Upton
,
J.
, and
Marler
,
J. J.
,
1998
, “
Transplantation of Cells in Matrices for Tissue Regeneration
,”
Adv. Drug Deliv. Rev.
,
33
(
1–2
), pp.
165
182
.
2.
Lee
,
K. Y.
, and
Mooney
,
D. J.
,
2001
, “
Hydrogels for Tissue Engineering
,”
Chem. Rev.
,
101
(
7
), pp.
1869
1879
.
3.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
4.
Anderson
,
I. A.
,
Gisby
,
T. A.
,
Mckay
,
T. G.
,
O'brien
,
B. M.
, and
Calius
,
E. P.
,
2012
, “
Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines
,”
J. Appl. Phys.
,
112
(
4
), p.
041101
.
5.
Lee
,
S.
,
Reuveny
,
A.
,
Reeder
,
J.
,
Lee
,
S.
,
Jin
,
H.
,
Liu
,
Q.
,
Yokota
,
T.
,
Sekitani
,
T.
,
Isoyama
,
T.
, and
Abe
,
Y.
,
2016
, “
A Transparent Bending-Insensitive Pressure Sensor
,”
Nat. Nanotechnol.
,
11
(
5
), pp.
472
478
.
6.
Lipomi
,
D. J.
,
Tee
,
B. C.
,
Vosgueritchian
,
M.
, and
Bao
,
Z.
,
2011
, “
Stretchable Organic Solar Cells
,”
Adv. Mater.
,
23
(
15
), pp.
1771
1775
.
7.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
,
Wang
,
M.
, and
Whitesides
,
G. M.
,
2011
, “
Multigait Soft Robot
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
51
), p.
20400
.
8.
Zhao
,
H.
,
Li
,
Y.
,
Elsamadisi
,
A.
, and
Shepherd
,
R.
,
2015
, “
Scalable Manufacturing of High Force Wearable Soft Actuators
,”
Extreme Mech. Lett.
,
3
, pp.
89
104
.
9.
Rivlin
,
R. S.
, and
Thomas
,
A. G.
,
1953
, “
Rupture of Rubber. I. Characteristic Energy for Tearing
,”
J. Polym. Sci. Part A Polym. Chem.
,
10
(
3
), pp.
291
318
.
10.
Thomas
,
A. G.
,
1955
, “
Rupture of Rubber. II. The Strain Concentration at an Incision
,”
J. Polym. Sci. Part A Polym. Chem.
,
18
(
88
), pp.
177
188
.
11.
Greensmith
,
H. W.
,
Mullins
,
L.
, and
Thomas
,
A. G.
,
1960
, “
Rupture of Rubber
,”
Trans. Soc. Rheol.
,
4
(
1
), pp.
179
189
.
12.
Lake
,
G. J.
, and
Thomas
,
A. G.
,
1967
, “
The Strength of Highly Elastic Materials
,”
Proc. R. Soc. London
,
300
(
1460
), pp.
108
119
.
13.
Thomas
,
A. G.
,
1962
, “
Rupture of Rubber
,”
Rheol. Acta
,
2
(
1
), pp.
63
66
.
14.
Ma
,
Z.
,
Feng
,
X. C.
, and
Hong
,
W.
,
2016
, “
Fracture of Soft Elastic Foam
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
031007
.
15.
Pourmodheji
,
R.
,
Qu
,
S.
, and
Yu
,
H.
,
2018
, “
Two Possible Defect Growth Modes in Soft Solids
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031001
.
16.
Mao
,
Y. M.
, and
Anand
,
L.
,
2018
, “
Fracture of Elastomeric Materials by Crosslink Failure
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081008
.
17.
Ko
,
H. C.
,
Stoykovich
,
M. P.
,
Song
,
J.
,
Malyarchuk
,
V.
,
Choi
,
W. M.
,
Yu
,
C. J.
,
Rd
,
G. J.
,
Xiao
,
J.
,
Wang
,
S.
, and
Huang
,
Y.
,
2008
, “
A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics
,”
Nature
,
454
(
7205
), pp.
748
753
.
18.
Dagdeviren
,
C.
,
Shi
,
Y.
,
Joe
,
P.
,
Ghaffari
,
R.
,
Balooch
,
G.
,
Usgaonkar
,
K.
,
Gur
,
O.
,
Tran
,
P. L.
,
Crosby
,
J. R.
, and
Meyer
,
M.
,
2015
, “
Conformal Piezoelectric Systems for Clinical and Experimental Characterization of Soft Tissue Biomechanics
,”
Nat. Mater.
,
14
(
7
), pp.
728
736
.
19.
Wang
,
A.
,
Avila
,
R.
, and
Ma
,
Y. J.
,
2017
, “
Mechanics Design for Buckling of Thin Ribbons on an Elastomeric Substrate Without Material Failure
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
094501
.
20.
Huang
,
Y.
,
Yuan
,
J. H.
,
Zhang
,
Y. C.
, and
Feng
,
X.
,
2016
, “
Interfacial Delamination of Inorganic Films on Viscoelastic Substrates
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101005
.
21.
Sun
,
J. Y.
,
Zhao
,
X.
,
Illeperuma
,
W. R. K.
,
Chaudhuri
,
O.
,
Oh
,
K. H.
,
Mooney
,
D. J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Highly Stretchable and Tough Hydrogels
,”
Nature
,
489
(
7414
), pp.
133
136
.
22.
Long
,
R.
, and
Hui
,
C. Y.
,
2015
, “
Crack Tip Fields in Soft Elastic Solids Subjected to Large Quasi-Static Deformation—A Review
,”
Extreme Mech. Lett.
,
4
, pp.
131
155
.
23.
Chen
,
C.
,
Wang
,
Z.
, and
Suo
,
Z.
,
2017
, “
Flaw Sensitivity of Highly Stretchable Materials
,”
Extreme Mech. Lett.
,
10
, pp.
50
57
.
24.
Creton
,
C.
, and
Ciccotti
,
M.
,
2016
, “
Fracture and Adhesion of Soft Materials: A Review
,”
Rep. Prog. Phys. Phys. Soc.
,
79
(
4
), p.
046601
.
25.
Wang
,
L.
,
Qiao
,
S.
,
Ameri
,
S. K.
,
Jeong
,
H.
, and
Lu
,
N.
,
2017
, “
A Thin Elastic Membrane Conformed to a Soft and Rough Substrate Subjected to Stretching/Compression
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111003
.
26.
Meng
,
X. M.
,
Wang
,
Z. W.
,
Vinnikova
,
S.
, and
Wang
,
S.
,
2018
, “
Mechanics of Periodic Film Cracking in Bilayer Structures Under Stretching
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071006
.
27.
Mukherjee
,
B.
,
Batra
,
R. C.
, and
Dillard
,
D. A.
,
2017
, “
Edge Debonding in Peeling of a Thin Flexible Plate From an Elastomer Layer: A Cohesive Zone Model Analysis
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021003
.
28.
Ding
,
J. Q.
,
Remmers
,
J. J. C.
,
Leszczynski
,
S.
, and
Huyghe
,
J. M.
,
2018
, “
Swelling Driven Crack Propagation in Large Deformation in Ionized Hydrogel
,”
ASME J. Appl. Mech.
,
85
(
2
), p.
021007
.
29.
,
C.
,
2013
, “
Mechanics of Tunable Hemispherical Electronic Eye Camera Systems That Combine Rigid Device Elements With Soft Elastomers
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061022
.
30.
Wang
,
S.
,
Li
,
M.
,
Wu
,
J.
,
Kim
,
D. H.
,
Lu
,
N.
,
Su
,
Y.
,
Kang
,
Z.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Mechanics of Epidermal Electronics
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031022
.
31.
Luo
,
J. C.
, and
Gao
,
C. F.
,
2009
, “
Faber Series Method for Plane Problems of an Arbitrarily Shaped Inclusion
,”
Acta Mech.
,
208
(
3–4
), pp.
133
145
.
32.
Gao
,
C. F.
, and
Noda
,
N.
,
2004
, “
Faber Series Method for Two-Dimensional Problems of an Arbitrarily Shaped Inclusion in Piezoelectric Materials
,”
Acta Mech.
,
171
(
1–2
), pp.
1
13
.
33.
Muskhelishvili
,
N. I.
,
1975
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen, The Netherlands
.
34.
Jiang
,
C. P.
,
1991
, “
The Plane Problem of Collinear Rigid Lines Under Arbitrary Loads
,”
Eng. Fract. Mech.
,
39
(
2
), pp.
299
308
.
You do not currently have access to this content.