The sensitivity of crack growth resistance to the choice of isotropic or kinematic hardening is investigated. Monotonic mode I crack advance under small scale yielding conditions is modeled via a cohesive zone formulation endowed with a traction–separation law. R-curves are computed for materials that exhibit linear or power law hardening. Kinematic hardening leads to an enhanced crack growth resistance relative to isotropic hardening. Moreover, kinematic hardening requires greater crack extension to achieve the steady-state. These differences are traced to the nonproportional loading of material elements near the crack tip as the crack advances. The sensitivity of the R-curve to the cohesive zone properties and to the level of material strain hardening is explored for both isotropic and kinematic hardening.

References

1.
Rice
,
J. R.
, and
Sorensen
,
E. P.
,
1978
, “
Continuing Crack-Tip Deformation and Fracture for Plane-Strain Crack Growth in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
26
(
3
), pp.
163
186
.
2.
Lam
,
P. S.
, and
McMeeking
,
R. M.
,
1984
, “
Analyses of Steady Quasistatic Crack Growth in Plane Strain Tension in Elastic-Plastic Materials With Non-Isotropic Hardening
,”
J. Mech. Phys. Solids
,
32
(
5
), pp.
395
414
.
3.
Carpinteri
,
A.
,
1985
, “
Crack Growth Resistance in Non-Perfect Plasticity: Isotropic Versus Kinematic Hardening
,”
Theor. Appl. Fract. Mech.
,
4
(
2
), pp.
117
122
.
4.
Frederick
,
C. O.
, and
Armstrong
,
P. J.
,
2007
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Mater. High Temp.
,
24
(
1
), pp.
1
26
.
5.
Bower
,
A. F.
,
2009
,
Applied Mechanics of Solids
,
CRC Press/Taylor & Francis
,
Boca Raton, FL
.
6.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects
,”
Int. J. Plast.
,
7
(
7
), pp.
661
678
.
7.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
,
1990
,
Mechanics of Solid Materials
,
19
,
Cambridge University Press
,
New York
.
8.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
), pp.
1642
1693
.
9.
Ziegler
,
H.
,
1959
, “
A Modification of Prager's Hardening Rule
,”
Q. Appl. Math.
,
17
(
1
), pp.
55
65
.
10.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.
11.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
12.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium of Crack in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
13.
Dassault Systèmes SIMULIA,
2017
, “
Abaqus/Standard 2017
,” Dassault Systèmes SIMULIA, Providence, RI.
14.
del Busto
,
S.
,
Betegón
,
C.
, and
Martínez-Pañeda
,
E.
,
2017
, “
A Cohesive Zone Framework for Environmentally Assisted Fatigue
,”
Eng. Fract. Mech.
,
185
, pp.
210
226
.
15.
Segurado
,
J.
, and
LLorca
,
J.
,
2004
, “
A New Three-Dimensional Interface Finite Element to Simulate Fracture in Composites
,”
Int. J. Solids Struct.
,
41
(
11–12
), pp.
2977
2993
.
16.
Martínez-Pañeda
,
E.
,
del Busto
,
S.
, and
Betegón
,
C.
,
2017
, “
Non-Local Plasticity Effects on Notch Fracture Mechanics
,”
Theor. Appl. Fract. Mech.
,
92
, pp.
276
287
.
17.
ASTM, 2001,
Standard Test Method for Measurement of Fracture Toughness
,” American Society for Testing and Materials, Philadelphia, PA, Standard No.
ASTM E 1820-01
.
18.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics. Fundamentals and Applications
, 3rd ed.,
CRC Press/Taylor & Francis
,
Boca Raton, FL
.
19.
Tvergaard
,
V.
,
1978
, “
Effect of Kinematic Hardening on Localized Necking in Biaxially Stretched Sheets
,”
Int. J. Mech. Sci.
,
20
(
9
), pp.
651
658
.
20.
Mear
,
M. E.
, and
Hutchinson
,
J. W.
,
1985
, “
Influence of Yield Surface Curvature on Flow Localization in Dilatant Plasticity
,”
Mech. Mater.
,
4
(
3–4
), pp.
395
407
.
You do not currently have access to this content.