In this paper, we present an experimental study on strain hardening of amorphous thermosets. A series of amorphous polymers is synthesized with similar glass transition regions and different network densities. Uniaxial compression tests are then performed at two different strain rates spanning the glass transition region. The results show that a more pronounced hardening response can be observed as decreasing temperature and increasing strain rate and network density. We also use the Neo-Hookean model and Arruda–Boyce model to fit strain hardening responses. The Neo-Hookean model can only describe strain hardening of the lightly cross-linked polymers, while the Arruda–Boyce model can well describe hardening behaviors of all amorphous networks. The locking stretch of the Arruda–Boyce model decreases significantly with increasing network density. However, for each amorphous network, the locking stretch is the same regardless of the deformation temperature and rate. The hardening modulus exhibits a sharp transition with temperature. The transition behaviors of hardening modulus also vary with the network density. For lightly crosslinked networks, the hardening modulus changes 60 times with temperature. In contrast, for heavily crosslinked polymers, the hardening modulus in the glassy state is only 2 times of that in the rubbery state. Different from the results from molecular dynamic simulation in literatures, the hardening modulus of polymers in the glassy state does not necessarily increase with network density. Rather, the more significant hardening behaviors in more heavily crosslinked polymers are attributed to a lower value of the stretch limit.

References

References
1.
Zhang
,
R.
,
Bai
,
P.
,
Lei
,
D.
, and
Xiao
,
R.
,
2018
, “
Aging-Dependent Strain Localization in Amorphous Glassy Polymers: From Necking to Shear Banding
,”
Int. J. Solids Struct.
,
146
, pp.
203
213
.
2.
Van Melick
,
H.
,
Govaert
,
L.
, and
Meijer
,
H.
,
2003
, “
On the Origin of Strain Hardening in Glassy Polymers
,”
Polymer
,
44
(
8
), pp.
2493
2502
.
3.
Li
,
H. X.
, and
Buckley
,
C. P.
,
2010
, “
Necking in Glassy Polymers: Effects of Intrinsic Anisotropy and Structural Evolution Kinetics in Their Viscoplastic Flow
,”
Int. J. Plast.
,
26
(
12
), pp.
1726
1745
.
4.
Govaert
,
L. E.
,
Engels
,
T. A. P., M. W.
,
Tervoort
,
T. A.
, and
Ulrich
,
W. S.
,
2008
, “
Does the Strain Hardening Modulus of Glassy Polymers Scale With the Flow Stress
,”
J. Polym. Sci. Part B
,
46
(
22
), pp.
2475
2481
.
5.
Sarva
,
S. S.
,
Deschanel
,
S.
,
Boyce
,
M. C.
, and
Chen
,
W.
,
2007
, “
Stress–Strain Behavior of a Polyurea and a Polyurethane From Low to High Strain Rates
,”
Polymer
,
48
(
8
), pp.
2208
2213
.
6.
Guo
,
H.
,
Guo
,
W.
,
Amirkhizi
,
A. V.
,
Zou
,
R.
, and
Yuan
,
K.
,
2016
, “
Experimental Investigation and Modeling of Mechanical Behaviors of Polyurea Over Wide Ranges of Strain Rates and Temperatures
,”
Polym. Test.
,
53
, pp.
234
244
.
7.
Zaroulis, J. S.
, and
Boyce, M. C.
, 1997, “
Temperature, Strain Rate, and Strain State Dependence of the Evolution in Mechanical Behaviour and Structure of Poly(Ethylene Terephthalate) With Finite Strain Deformation
,”
Polymer
,
38
(6), pp. 1303–1315.
8.
Dupaix
,
R. B.
, and
Boyce
,
M. C.
,
2005
, “
Finite Strain Behavior of Poly (Ethylene Terephthalate)(PET) and Poly (Ethylene Terephthalate)-Glycol (PETG)
,”
Polymer
,
46
(
13
), pp.
4827
4838
.
9.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Quintus-Bosz
,
H.
,
1993
, “
Effects of Initial Anisotropy on the Finite Strain Deformation Behavior of Glassy Polymers
,”
Int. J. Plast.
,
9
(
7
), pp.
783
811
.
10.
Hine
,
P. J.
,
Duckett
,
A.
, and
Read
,
D. J.
,
2007
, “
Influence of Molecular Orientation and Melt Relaxation Processes on Glassy Stress-Strain Behavior in Polystyrene
,”
Macromolecules
,
40
(
8
), pp.
2782
2790
.
11.
Senden
,
D. J. A.
,
van Dommelen
,
J. A. W.
, and
Govaert
,
L. E.
,
2010
, “
Strain Hardening and Its Relation to Bauschinger Effects in Oriented Polymers
,”
J. Polym. Sci. Part B
,
48
(
13
), pp.
1483
1494
.
12.
Haward
,
R. N.
, and
Thackray
,
G.
,
1968
, “
The Use of Mathematical Models to Describe Isothermal Stress Strain Curves in Glassy Thermoplastics
,”
Proc. R. Soc. London Ser. A
,
302
(
1471
), p.
453
.
13.
Tervoort
,
T.
, and
Govaert
,
L.
,
2000
, “
Strain-Hardening Behavior of Polycarbonate in the Glassy State
,”
J. Rheol.
,
44
(
6
), pp.
1263
1277
.
14.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
Evolution of Plastic Anisotropy in Amorphous Polymers During Finite Straining
,”
Int. J. Plast.
,
9
(
6
), pp.
697
720
.
15.
Hoy
,
R. S.
, and
Robbins
,
M. O.
,
2006
, “
Strain Hardening of Polymer Glasses: Effect of Entanglement Density, Temperature, and Rate
,”
J. Polym. Sci. Part B
,
44
(
24
), pp.
3487
3500
.
16.
Hoy
,
R. S.
, and
Robbins
,
M. O.
,
2007
, “
Strain Hardening in Polymer Glasses: Limitations of Network Models
,”
Phys. Rev. Lett.
,
99
(
11
), p.
117801
.
17.
Nayak
,
K.
,
Read
,
D. J.
,
McLeish
,
T. C.
,
Hine
,
P. J.
, and
Tassieri
,
M.
,
2011
, “
A Coarse-Grained Molecular Model of Strain-Hardening for Polymers in the Marginally Glassy State
,”
J. Polym. Sci. Part B
,
49
(
13
), pp.
920
938
.
18.
Mahajan
,
D. K.
, and
Basu
,
S.
,
2010
, “
Investigations Into the Applicability of Rubber Elastic Analogy to Hardening in Glassy Polymers
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
2
), p.
025001
.
19.
Xu
,
W.
,
Wu
,
F.
,
Jiao
,
Y.
, and
Liu
,
M.
,
2017
, “
A General Micromechanical Framework of Effective Moduli for the Design of Nonspherical Nano- and Micro-Particle Reinforced Composites With Interface Properties
,”
Mater. Des.
,
127
, pp.
162
172
.
20.
Sudarkodi
,
V.
, and
Basu
,
S.
,
2014
, “
Investigations Into the Origins of Plastic Flow and Strain Hardening in Amorphous Glassy Polymers
,”
Int. J. Plast.
,
56
, pp.
139
155
.
21.
Chen
,
K.
, and
Schweizer
,
K. S.
,
2009
, “
Suppressed Segmental Relaxation as the Origin of Strain Hardening in Polymer Glasses
,”
Phys. Rev. Lett.
,
102
(
3
), p.
038301
.
22.
Chen
,
K.
,
Saltzman
,
E.
, and
Schweizer
,
K.
,
2009
, “
Segmental Dynamics in Polymers: From Cold Melts to Ageing and Stressed Glasses
,”
J. Phys.: Condens. Matter
,
21
(
50
), p.
503101
.
23.
Voyiadjis
,
G. Z.
, and
Samadi-Dooki
,
A.
,
2016
, “
Constitutive Modeling of Large Inelastic Deformation of Amorphous Polymers: Free Volume and Shear Transformation Zone Dynamics
,”
J. Appl. Phys.
,
119
(
22
), p.
225104
.
24.
Nguyen
,
T. D.
,
Yakacki
,
C. M.
,
Brahmbhatt
,
P. D.
, and
Chambers
,
M. L.
,
2010
, “
Modeling the Relaxation Mechanisms of Amorphous Shape Memory Polymers
,”
Adv. Mater.
,
22
(
31
), pp.
3411
3423
.
25.
Xiao
,
R.
,
Choi
,
J.
,
Lakhera
,
N.
,
Yakacki
,
C.
,
Frick
,
C.
, and
Nguyen
,
T.
,
2013
, “
Modeling the Glass Transition of Amorphous Networks for Shape-Memory Behavior
,”
J. Mech. Phys. Solids
,
61
(
7
), pp.
1612
1635
.
26.
Xiao
,
R.
, and
Nguyen
,
T. D.
,
2015
, “
An Effective Temperature Theory for the Nonequilibrium Behavior of Amorphous Polymers
,”
J. Mech. Phys. Solids
,
82
, pp.
62
81
.
27.
Wang
,
M. C.
, and
Guth
,
E.
,
1952
, “
Statistical Theory of Networks of Non-Gaussian Flexible Chains
,”
J. Chem. Phys.
,
20
(
7
), pp.
1144
1157
.
28.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
29.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineers
,
Wiley
,
Chichester, UK
.
30.
Yakacki
,
C. M.
,
Shandas
,
R.
,
Lanning
,
C.
,
Rech
,
B.
,
Eckstein
,
A.
, and
Gall
,
K.
,
2007
, “
Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications
,”
Biomaterials
,
28
(
14
), pp.
2255
2263
.
31.
Safranski
,
D. L.
, and
Gall
,
K.
,
2008
, “
Effect of Chemical Structure and Crosslinking Density on the Thermo-Mechanical Properties and Toughness of (Meth)Acrylate Shape Memory Polymer Networks
,”
Polymer
,
49
(
20
), pp.
4446
4455
.
32.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
,
1995
, “
Effects of Strain Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
,
19
(
2–3
), pp.
193
212
.
33.
Silberstein
,
M. N.
, and
Boyce
,
M. C.
,
2010
, “
Constitutive Modeling of the Rate, Temperature, and Hydration Dependent Deformation Response of Nafion to Monotonic and Cyclic Loading
,”
J. Power Sources
,
195
(
17
), pp.
5692
5706
.
34.
Ames
,
N. M.
,
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand
,
L.
,
2009
, “
A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers—Part II: Applications
,”
Int. J. Plast.
,
25
(
8
), pp.
1495
1539
.
35.
Srivastava
,
V.
,
Chester
,
S. A.
,
Ames
,
N. M.
, and
Anand
,
L.
,
2010
, “
A Thermo-Mechanically-Coupled Large-Deformation Theory for Amorphous Polymers in a Temperature Range Which Spans Their Glass Transition
,”
Int. J. Plast.
,
26
(
8
), pp.
1138
1182
.
36.
Bouvard
,
J.-L.
,
Francis
,
D. K.
,
Tschopp
,
M. A.
,
Marin
,
E.
,
Bammann
,
D.
, and
Horstemeyer
,
M.
,
2013
, “
An Internal State Variable Material Model for Predicting the Time, Thermomechanical, and Stress State Dependence of Amorphous Glassy Polymers Under Large Deformation
,”
Int. J. Plast.
,
42
, pp.
168
193
.
37.
Dupaix
,
R. B.
, and
Boyce
,
M. C.
,
2007
, “
Constitutive Modeling of the Finite Strain Behavior of Amorphous Polymers in and Above the Glass Transition
,”
Mech. Mater.
,
39
(
1
), pp.
39
52
.
You do not currently have access to this content.