Stepwise crack propagation is evidently observed in experiments both in geomaterials and in hydrogels. Pizzocolo et al. (2012, “Mode I Crack Propagation in Hydrogels is Step Wise,” Eng. Fract. Mech., 97(1), pp. 72–79) show experimental evidence that mode I crack propagation in hydrogel is stepwise. The pattern of the intermittent crack growth is influenced by many factors, such as porosity of the material, the permeability of the fluid, the stiffness of the material, etc. The pause duration time is negatively correlated with the stiffness of the material, while the average propagation length per step is positively correlated. In this paper, we integrate extended finite element method (XFEM) and enhanced local pressure (ELP) method, and incorporate cohesive relation to reproduce the experiments of Pizzocolo et al. in the finite deformation regime. We investigate the stepwise phenomenon in air and in water, respectively, under mode I fracture. Our simulations show that despite the homogeneous material properties, the crack growth under mode I fracture is stepwise, and this pattern is influenced by the hydraulic permeability and the porosity of the material. Simulated pause duration is negatively correlated with stiffness, and the average propagating length is positively correlated with stiffness. In order to eliminate the numerical artifacts, we also take different time increments into consideration. The staccato propagation does not disappear with smaller time increments, and the pattern is approximately insensitive to the time increment. However, we do not observe stepwise crack growth scheme when we simulate fracture in homogeneous rocks.

References

References
1.
Pizzocolo
,
F.
,
Huyghe
,
J. M.
, and
Ito
,
K.
,
2012
, “
Mode I Crack Propagation in Hydrogels is Step Wise
,”
Eng. Fract. Mech.
,
97
(
1
), pp.
72
79
.
2.
Phillps
,
W. J.
,
1972
, “
Hydraulic Fracturing and Mineralization
,”
J. Geol. Soc. London
,
128
(
4
), pp.
337
359
.
3.
Obara
,
K.
,
Hirose
,
H.
,
Yamamizu
,
F.
, and
Kasahara
,
K.
,
2004
, “
Episodic Slow Slip Events Accompanied by Non-Volcanic Tremors in Southwest Japan Subduction Zone
,”
Geophys. Res. Lett.
,
31
(
23
), pp.
1
4
.
4.
Burlini
,
L.
, and
Di Toro
,
G.
,
2008
, “
Geophysics: Volcanic Symphony in the Lab
,”
Science
,
322
(
5899
), pp.
207
208
.
5.
Beroza
,
G. C.
, and
Ide
,
S.
,
2011
, “
Slow Earthquakes and Nonvolcanic Tremor
,”
Annu. Rev. Earth Planet Sci.
,
39
(
1
), pp.
271
296
.
6.
Cao
,
T. D.
,
Milanese
,
E.
,
Remij
,
E. W.
,
Rizzato
,
P.
,
Remmers
,
J. J.
,
Simoni
,
L.
,
Huyghe
,
J. M.
,
Hussain
,
F.
, and
Schrefler
,
B. A.
,
2017
, “
Interaction Between Crack Tip Advancement and Fluid Flow in Fracturing Saturated Porous Media
,”
Mech. Res. Commun.
,
80
, pp.
24
37
.
7.
Remij
,
E.
,
Remmers
,
J.
,
Huyghe
,
J.
, and
Smeulders
,
D.
,
2016
, “
An Investigation of the Step-Wise Propagation of a Mode-II Fracture in a Poroelastic Medium
,”
Mech. Res. Commun.
,
80
, pp.
10
15
.
8.
Crosley
,
P. B.
, and
Ripling
,
E. J.
,
1977
, “
Towards Development of Standard Test for Measuring K1a
,” ASTM International, West Conshohocken, PA, ASTM Paper No.
STP627
.
9.
Stepanov
,
G. V.
, and
Babutskii
,
A. I.
,
2005
, “
Stress Intensity Factor Variations Near the Edge Crack Tip Upon Its Stepwise Growth
,”
Strength Mater.
,
37
(
2
), pp.
159
162
.
10.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1779
1793
.
11.
Zhang
,
J.
,
Zhao
,
X.
,
Suo
,
Z.
, and
Jiang
,
H.
,
2009
, “
A Finite Element Method for Transient Analysis of Concurrent Large Deformation and Mass Transport in Gels
,”
J. Appl. Phys.
,
105
(
9
), p.
093522
.
12.
Ding
,
J.
,
Remmers
,
J. J. C.
,
Leszczynski
,
S.
, and
Huyghe
,
J. M.
,
2017
, “
Swelling Driven Crack Propagation in Large Deformation in Ionized Hydrogel
,”
ASME J. Appl. Mech.
,
85
(
2
), p.
021007
.
13.
Remij
,
E. W.
,
Remmers
,
J. J. C.
,
Huyghe
,
J. M.
, and
Smeulders
,
D. M. J.
,
2015
, “
The Enhanced Local Pressure Model for the Accurate Analysis of Fluid Pressure Driven Fracture in Porous Materials
,”
Comput. Method Appl. M
,
286
, pp.
293
312
.
14.
Ding
,
J.
,
Remmers
,
J. J. C.
,
Malakpoor
,
K.
, and
Huyghe
,
J. M.
,
2017
, “
Swelling Driven Cracking in Large Deformation in Porous Media
,”
Poromechanics VI
, American Society of Civil Engineers, Reston, VA, pp.
648
655
.
15.
Kraaijeveld
,
F.
,
Huyghe
,
J. M.
,
Remmers
,
J. J. C.
, and
de Borst
,
R.
,
2013
, “
Two-Dimensional Mode I Crack Propagation in Saturated Ionized Porous Media Using Partition of Unity Finite Elements
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
020907
.
16.
Irzal
,
F.
,
Remmers
,
J. J. C.
,
Huyghe
,
J. M.
, and
De Borst
,
R.
,
2013
, “
A Large Deformation Formulation for Fluid Flow in a Progressively Fracturing Porous Material
,”
Comput. Method Appl. Mech.
,
256
, pp.
29
37
.
17.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
van Donkelaar
,
C. C.
,
2006
, “
A Composition-Based Cartilage Model for the Assessment of Compositional Changes During Cartilage Damage and Adaptation
,”
Osteoarthritis Cartilage
,
14
(
6
), pp.
554
560
.
18.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
Van Donkelaar
,
C. C.
,
2007
, “
Depth-Dependent Compressive Equilibrium Properties of Articular Cartilage Explained by Its Composition
,”
Biomech. Model. Mech.
,
6
(
1–2
), pp.
43
53
.
19.
Boone
,
T. J.
, and
Ingraffea
,
A. R.
,
1990
, “
A Numerical Procedure for Simulation of Hydraulically-Driven Fracture Propagation in Poroelastic Media
,”
Int. J. Numer. Anal. Method
,
14
(
1
), pp.
27
47
.
20.
Wells
,
G.
, and
Sluys
,
L.
,
2001
, “
A New Method for Modelling Cohesive Cracks Using Finite Elements
,”
Int. J. Numer. Method Eng.
,
50
(
12
), pp.
2667
2682
.
21.
Cao
,
T. D.
,
Hussain
,
F.
, and
Schrefler
,
B. A.
,
2018
, “
Porous Media Fracturing Dynamics: Stepwise Crack Advancement and Fluid Pressure Oscillations
,”
J. Mech. Phys. Solids
,
111
, pp.
113
133
.
You do not currently have access to this content.