Stress concentration in porous materials is one of the most crucial culprits of mechanical failure. This paper focuses on planar porous materials with porosity less than 5%. We present a stress-prediction model of an arbitrarily rotated elliptical hole in a rhombus shaped representative volume element (RVE) that can represent a class of generic planar tessellations, including rectangular, triangular, hexagonal, Kagome, and other patterns. The theoretical model allows the determination of peak stress and distribution of stress generated near the edge of elliptical holes for any arbitrary tiling under displacement loading and periodic boundary conditions. The results show that the alignment of the void with the principal directions minimizes stress concentration. Numerical simulations support the theoretical findings and suggest the observations remain valid for porosity as large as 5%. This work provides a fundamental understanding of stress concentration in low-porosity planar materials with insight that not only complements classical theories on the subject but also provides a practical reference for material design in mechanical, aerospace, and other industry.

References

References
1.
Ashby
,
M.
, and
Bréchet
,
Y.
,
2003
, “
Designing Hybrid Materials
,”
Acta Mater.
,
51
(
19
), pp.
5801
5821
.
2.
Lee
,
M. G.
,
Lee
,
J. W.
,
Han
,
S. C.
, and
Kang
,
K.
,
2016
, “
Mechanical Analyses of ‘Shellular’, an Ultralow-Density Material
,”
Acta Mater.
,
103
, pp.
595
607
.
3.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Cui
,
H.
,
Chen
,
D.
,
Ye
,
J.
,
Fang
,
N.
,
Rodriguez
,
N.
, and
Weisgraber
,
T.
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
(
10
), p.
1100
.
4.
Elsayed
,
M. S.
, and
Pasini
,
D.
,
2010
, “
Analysis of the Elastostatic Specific Stiffness of 2D Stretching-Dominated Lattice Materials
,”
Mech. Mater.
,
42
(
7
), pp.
709
725
.
5.
Abad
,
E. M. K.
,
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2013
, “
Fatigue Design of Lattice Materials Via Computational Mechanics: Application to Lattices With Smooth Transitions in Cell Geometry
,”
Int. J. Fatigue
,
47
, pp.
126
136
.
6.
Wang
,
Z.
,
Jing
,
L.
,
Ning
,
J.
, and
Zhao
,
L.
,
2011
, “
The Structural Response of Clamped Sandwich Beams Subjected to Impact Loading
,”
Compos. Struct.
,
93
(
4
), pp.
1300
1308
.
7.
Grima
,
J. N.
, and
Gatt
,
R.
,
2010
, “
Perforated Sheets Exhibiting Negative Poisson's Ratios
,”
Adv. Eng. Mater.
,
12
(
6
), pp.
460
464
.
8.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson's Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
3
), pp.
361
366
.
9.
Mitschke
,
H.
,
Schwerdtfeger
,
J.
,
Schury
,
F.
,
Stingl
,
M.
,
Körner
,
C.
,
Singer
,
R. F.
,
Robins
,
V.
,
Mecke
,
K.
, and
Schröder‐Turk
,
G. E.
,
2011
, “
Finding Auxetic Frameworks in Periodic Tessellations
,”
Adv. Mater.
,
23
(
22–23
), pp.
2669
2674
.
10.
Overvelde
,
J. T. B.
,
Shan
,
S.
, and
Bertoldi
,
K.
,
2012
, “
Compaction Through Buckling in 2D Periodic, Soft and Porous Structures: Effect of Pore Shape
,”
Adv. Mater.
,
24
(
17
), pp.
2337
2342
.
11.
Shim
,
J.
,
Shan
,
S.
,
Košmrlj
,
A.
,
Kang
,
S. H.
,
Chen
,
E. R.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2013
, “
Harnessing Instabilities for Design of Soft Reconfigurable Auxetic/Chiral Materials
,”
Soft Matter
,
9
(
34
), pp.
8198
8202
.
12.
Shan
,
S.
,
Kang
,
S. H.
,
Zhao
,
Z.
,
Fang
,
L.
, and
Bertoldi
,
K.
,
2015
, “
Design of Planar Isotropic Negative Poisson's Ratio Structures
,”
Extreme Mech. Lett.
,
4
, pp.
96
102
.
13.
Gatt
,
R.
,
Mizzi
,
L.
,
Azzopardi
,
J. I.
,
Azzopardi
,
K. M.
,
Attard
,
D.
,
Casha
,
A.
,
Briffa
,
J.
, and
Grima
,
J. N.
,
2015
, “
Hierarchical Auxetic Mechanical Metamaterials
,”
Sci. Rep.
,
5
(
1
), p.
8395
.
14.
Carta
,
G.
,
Brun
,
M.
, and
Baldi
,
A.
,
2016
, “
Design of a Porous Material With Isotropic Negative Poisson's Ratio
,”
Mech. Mater.
,
97
, pp.
67
75
.
15.
Liu
,
J.
,
Gu
,
T.
,
Shan
,
S.
,
Kang
,
S. H.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2016
, “
Harnessing Buckling to Design Architected Materials That Exhibit Effective Negative Swelling
,”
Adv. Mater.
,
28
(
31
), pp.
6619
6624
.
16.
Mullin
,
T.
,
Deschanel
,
S.
,
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2007
, “
Pattern Transformation Triggered by Deformation
,”
Phys. Rev. Lett.
,
99
(
8
), p.
084301
.
17.
Bertoldi
,
K.
,
Boyce
,
M. C.
,
Deschanel
,
S.
,
Prange
,
S.
, and
Mullin
,
T.
,
2008
, “
Mechanics of Deformation-Triggered Pattern Transformations and Superelastic Behavior in Periodic Elastomeric Structures
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2642
2668
.
18.
Bertoldi
,
K.
, and
Boyce
,
M.
,
2008
, “
Mechanically Triggered Transformations of Phononic Band Gaps in Periodic Elastomeric Structures
,”
Phy. Rev. B
,
77
(
5
), p.
052105
.
19.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations
,”
Phys. Rev. B
,
78
(
18
), p.
184107
.
20.
Tang
,
Y.
,
Lin
,
G.
,
Han
,
L.
,
Qiu
,
S.
,
Yang
,
S.
, and
Yin
,
J.
,
2015
, “
Design of Hierarchically Cut Hinges for Highly Stretchable and Reconfigurable Metamaterials With Enhanced Strength
,”
Adv. Mater.
,
27
(
44
), pp.
7181
7190
.
21.
Lu
,
T.
,
Stone
,
H.
, and
Ashby
,
M.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.
22.
Lakes
,
R.
,
1996
, “
Cellular Solid Structures With Unbounded Thermal Expansion
,”
J. Mater. Sci. Lett.
,
15
(
6
), pp.
475
477
.
23.
Lehman
,
J.
, and
Lakes
,
R.
,
2013
, “
Stiff Lattices With Zero Thermal Expansion and Enhanced Stiffness Via Rib Cross Section Optimization
,”
Int. J. Mech. Mater. Des.
,
9
(
3
), pp.
213
225
.
24.
Lehman
,
J.
, and
Lakes
,
R.
,
2013
, “
Stiff, Strong Zero Thermal Expansion Lattices Via the Poisson Effect
,”
J. Mater. Res.
,
28
(
17
), pp.
2499
2508
.
25.
Lehman
,
J.
, and
Lakes
,
R. S.
,
2014
, “
Stiff, Strong, Zero Thermal Expansion Lattices Via Material Hierarchy
,”
Compos. Struct.
,
107
, pp.
654
663
.
26.
Xu
,
H.
, and
Pasini
,
D.
,
2016
, “
Structurally Efficient Three-Dimensional Metamaterials With Controllable Thermal Expansion
,”
Sci. Rep.
,
6
(
1
), p.
34924
.
27.
Xu
,
H.
,
Farag
,
A.
, and
Pasini
,
D.
,
2017
, “
Multilevel Hierarchy in Bi-Material Lattices With High Specific Stiffness and Unbounded Thermal Expansion
,”
Acta Mater.
,
134
, pp.
155
166
.
28.
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2012
, “
Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants With Functionally Graded Cellular Material
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031004
.
29.
Arabnejad
,
S.
,
Johnston
,
B.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2017
, “
Fully Porous 3D Printed Titanium Femoral Stem to Reduce Stress‐Shielding Following Total Hip Arthroplasty
,”
J. Orthop. Res.
,
35
(
8
), pp.
1774
1783
.
30.
Rahimizadeh
,
A.
,
Nourmohammadi
,
Z.
,
Arabnejad
,
S.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2018
, “
Porous Architected Biomaterial for a Tibial-Knee Implant With Minimum Bone Resorption and Bone-Implant Interface Micromotion
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
465
479
.
31.
Abad
,
E. M. K.
,
Pasini
,
D.
, and
Cecere
,
R.
,
2012
, “
Shape Optimization of Stress Concentration-Free Lattice for Self-Expandable Nitinol Stent-Grafts
,”
J. Biomech.
,
45
(
6
), pp.
1028
1035
.
32.
Lakes
,
R.
,
1993
, “
Materials With Structural Hierarchy
,”
Nature
,
361
(
6412
), p.
511
.
33.
Cho
,
Y.
,
Shin
,
J.-H.
,
Costa
,
A.
,
Kim
,
T. A.
,
Kunin
,
V.
,
Li
,
J.
,
Lee
,
S. Y.
,
Yang
,
S.
,
Han
,
H. N.
, and
Choi
,
I.-S.
,
2014
, “
Engineering the Shape and Structure of Materials by Fractal Cut
,”
Proc. Natl. Acad. Sci. U.S.A.
,
111
(
49
), pp.
17390
17395
.
34.
Overvelde
,
J. T.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2017
, “
Rational Design of Reconfigurable Prismatic Architected Materials
,”
Nature
,
541
(
7637
), p.
347
.
35.
Sigmund
,
O.
, and
Torquato
,
S.
,
1999
, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), p.
365
.
36.
Taylor
,
M.
,
Francesconi
,
L.
,
Gerendás
,
M.
,
Shanian
,
A.
,
Carson
,
C.
, and
Bertoldi
,
K.
,
2014
, “
Low Porosity Metallic Periodic Structures With Negative Poisson's Ratio
,”
Adv. Mater.
,
26
(
15
), pp.
2365
2370
.
37.
Javid
,
F.
,
Wang
,
P.
,
Shanian
,
A.
, and
Bertoldi
,
K.
,
2016
, “
Architected Materials With Ultra‐Low Porosity for Vibration Control
,”
Adv. Mater.
,
28
(
28
), pp.
5943
5948
.
38.
Javid
,
F.
,
Liu
,
J.
,
Rafsanjani
,
A.
,
Schaenzer
,
M.
,
Pham
,
M. Q.
,
Backman
,
D.
,
Yandt
,
S.
,
Innes
,
M. C.
,
Booth-Morrison
,
C.
, and
Gerendas
,
M.
,
2017
, “
On the Design of Porous Structures With Enhanced Fatigue Life
,”
Extreme Mech. Lett.
,
16
, pp.
13
17
.
39.
Grima
,
J. N.
,
Mizzi
,
L.
,
Azzopardi
,
K. M.
, and
Gatt
,
R.
,
2016
, “
Auxetic Perforated Mechanical Metamaterials With Randomly Oriented Cuts
,”
Adv. Mater.
,
28
(
2
), pp.
385
389
.
40.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.
41.
Rafsanjani
,
A.
, and
Bertoldi
,
K.
,
2017
, “
Buckling-Induced Kirigami
,”
Phys. Rev. Lett.
,
118
(
8
), p.
084301
.
42.
Timoshenko
,
S.
, and
Goodier
,
J.
,
1970
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
43.
Pilkey
,
W. D.
, and
Pilkey
,
D. F.
,
2008
,
Peterson's Stress Concentration Factors
,
Wiley
,
Hoboken, NJ
.
44.
Durelli
,
A.
,
Parks
,
V.
, and
Feng
,
H.
,
1966
, “
Stresses Around an Elliptical Hole in a Finite Plate Subjected to Axial Loading
,”
ASME J. Appl. Mech.
,
33
(
1
), pp.
192
195
.
45.
Kassir
,
M.
, and
Sih
,
G. C.
,
1966
, “
Three-Dimensional Stress Distribution Around an Elliptical Crack Under Arbitrary Loadings
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
601
611
.
46.
Givoli
,
D.
, and
Elishakoff
,
I.
,
1992
, “
Stress Concentration at a Nearly Circular Hole With Uncertain Irregularities
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S65
S71
.
47.
Shivakumar
,
K.
, and
Newman
,
J.
,
1995
, “
Stress Concentration Equations for Straight-Shank and Countersunk Holes in Plates
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
248
249
.
48.
Murthy
,
M. V.
,
1969
, “
Stresses Around an Elliptic Hole in a Cylindrical Shell
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
39
46
.
49.
Youngdahl
,
C. K.
, and
Sternberg
,
E.
,
1966
, “
Three-Dimensional Stress Concentration Around a Cylindrical Hole in a Semi-Infinite Elastic Body
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
855
865
.
50.
Lee
,
E. J.
, and
Klang
,
E. C.
,
1992
, “
Stress Distribution in an Edge-Stiffened Semi-Infinite Elastic Plate Containing a Circular Hole
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
789
795
.
51.
Chau
,
K.
, and
Wei
,
X.
,
2001
, “
Stress Concentration Reduction at a Reinforced Hole Loaded by a Bonded Circular Inclusion
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
405
411
.
52.
Seide
,
P.
, and
Hafiz
,
A.
,
1975
, “
Stress Concentration in a Stretched Cylindrical Shell With Two Equal Circular Holes
,”
ASME J. Appl. Mech.
,
42
(
1
), pp.
105
109
.
53.
Hansen
,
E. B.
,
1978
, “
Stress Concentration in a Stretched Cylindrical Shell With Two Elliptical Holes
,”
ASME J. Appl. Mech.
,
45
(
4
), pp.
839
844
.
54.
Chen
,
W. T.
,
1970
, “
Stress Concentration Around Spheroidal Inclusions and Cavities in a Transversely Isotropic Material Under Pure Shear
,”
ASME J. Appl. Mech.
,
37
(
1
), pp.
85
92
.
55.
Atsumi
,
A.
, and
Itou
,
S.
,
1973
, “
Stresses in a Transversely Isotropic Slab Having a Spherical Cavity
,”
ASME J. Appl. Mech.
,
40
(
3
), pp.
752
758
.
56.
Hwu
,
C.
,
1990
, “
Anisotropic Plates With Various Openings Under Uniform Loading or Pure Bending
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
700
706
.
57.
Attar
,
M. M.
,
2013
, “
Analytical Study of Two Pin-Loaded Holes in Unidirectional Fiber-Reinforced Composites
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021004
.
58.
Rao
,
M. B.
, and
Murthy
,
M.
,
1977
, “
Stress Concentration Around an Elliptic Hole in a Cylindrical Shell Under Torsion With Major Axis of the Hole Perpendicular to the Shell Axis
,”
ASME J. Appl. Mech.
,
4
(
1
), pp.
184
186
.
59.
Shilkrut
,
D.
, and
Ben-Gad
,
E.
,
1985
, “
Elastic Stress Concentration Phenomena in an Axially Stressed Rectangular Plate With a Central Circular Hole and Other Related Problems
,”
ASME J. Appl. Mech.
,
52
(
1
), pp.
216
219
.
60.
Inglis
,
C. E.
,
1913
, “
Stresses in a Plate Due to the Presence of Cracks and Sharp Corners
,”
Trans. R. Inst. Nav. Archit.
,
55
(
219–241
), pp.
193
198
.
You do not currently have access to this content.