The current work aims to develop two extended Greenwood–Williamson (GW) models for spherical particles with surface roughness which can be incorporated into the discrete element modeling (DEM) framework. The defects of the classic GW model when directly adopted in DEM are fully addressed and illustrated by both theoretical and numerical results. The first model, the extended elastic GW (E-GW) model, which evaluates the elastic deformation of the asperities and the bulk substrate separately is developed to consider the positive overlap involved in the contact problem. The capability of incorporating the extended elastic model into the DEM is illustrated by the comparison between the classic and extended models. The second model, the extended elasto–plastic GW (EP-GW) model, is further developed to consider the plastic deformation of the asperities which reduces the pressure increased by the surface roughness. Numerical comparisons between the E-GW and EP-GW models are also conducted to demonstrate the effect of the plastic deformation on the pressure and deformation distributions in the contact region.

References

1.
Feng
,
Y. T.
,
Zhao
,
T.
,
Kato
,
J.
, and
Zhou
,
W.
,
2017
, “
Towards Stochastic Discrete Element Modelling of Spherical Particles With Surface Roughness: A Normal Interaction Law
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
247
272
.
2.
Zhao
,
T.
,
Feng
,
Y. T.
, and
Wang
,
M.
,
2018
, “
An Extended Greenwood-Williamson Model Based Normal Interaction Law for Discrete Element Modelling of Spherical Particles With Surface Roughness
,”
Int. J. Numer. Anal. Methods Geomech.
(in press).
3.
Cho
,
N. A.
,
Martin
,
C. D.
, and
Sego
,
D. C.
,
2007
, “
A Clumped Particle Model for Rock
,”
Int. J. Rock Mech. Min. Sci.
,
44
(
7
), pp.
997
1010
.
4.
Hryciw
,
R. D.
,
Zheng
,
J.
, and
Shetler
,
K.
,
2016
, “
Particle Roundness and Sphericity From Images of Assemblies by Chart Estimates and Computer Methods
,”
J. Geotech. Geoenviron. Eng.
,
142
(
9
), p.
04016038
.
5.
Jensen
,
R. P.
,
Bosscher
,
P. J.
,
Plesha
,
M. E.
, and
Edil
,
T. B.
,
1999
, “
DEM Simulation of Granular Media Structure Interface: Effects of Surface Roughness and Particle Shape
,”
Int. J. Numer. Anal. Methods Geomech.
,
23
(
6
), pp.
531
547
.
6.
Wang
,
L.
,
Park
,
J. Y.
, and
Fu
,
Y.
,
2007
, “
Representation of Real Particles for DEM Simulation Using X-Ray Tomography
,”
Constr. Build. Mater.
,
21
(
2
), pp.
338
346
.
7.
Lu
,
M.
, and
McDowell
,
G. R.
,
2007
, “
The Importance of Modelling Ballast Particle Shape in the Discrete Element Method
,”
Granular Matter
,
9
(
1–2
), p.
69
.
8.
Ferellec
,
J. F.
, and
McDowell
,
G. R.
,
2008
, “
A Simple Method to Create Complex Particle Shapes for DEM
,”
Geomech. Geoengineering: An Int. J.
,
3
(
3
), pp.
211
216
.
9.
Shamsi
,
M. M.
, and
Mirghasemi
,
A. A.
,
2012
, “
Numerical Simulation of 3D Semi-Real-Shaped Granular Particle Assembly
,”
Powder Technol.
,
28
(
2
), pp.
431
446
.
10.
Zhou
,
W.
,
Ma
,
G.
,
Chang
,
X. L.
, and
Duan
,
Y.
,
2015
, “
Discrete Modeling of Rockfill Materials Considering the Irregular Shaped Particles and Their Crushability
,”
Eng. Comput.
,
32
(
4
), pp.
1104
1120
.
11.
Feng
,
Y. T.
, and
Owen
,
D. R. J.
,
2004
, “
A 2D Polygon/Polygon Contact Model: Algorithmic Aspects
,”
Eng. Comput.
,
21
(
2/3/4
), pp.
265
277
.
12.
Han
,
K.
,
Feng
,
Y. T.
, and
Owen
,
D. R. J.
,
2006
, “
Polygon-Based Contact Resolution for Superquadrics
,”
Int. J. Numer. Methods Eng.
,
66
(
3
), pp.
485
501
.
13.
Feng
,
Y. T.
,
Han
,
K.
, and
Owen
,
D. R. J.
,
2012
, “
Energy-Conserving Contact Interaction Models for Arbitrarily Shaped Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
205–208
, pp.
169
177
.
14.
Feng
,
Y. T.
,
Han
,
K.
, and
Owen
,
D. R. J.
,
2017
, “
A Generic Contact Detection Framework for Cylindrical Particles in Discrete Element Modelling
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
632
651
.
15.
Iwashita
,
K.
, and
Oda
,
M.
,
1998
, “
Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM
,”
J. Eng. Mech.
,
124
(
3
), pp.
285
292
.
16.
Jiang
,
M. J.
,
Yu
,
H. S.
, and
Harris
,
D.
,
2005
, “
A Novel Discrete Model for Granular Material Incorporating Rolling Resistance
,”
Comput. Geotechnics.
,
32
(
5
), pp.
340
357
.
17.
Huang
,
X.
,
Hanley
,
K. J.
,
O'Sullivan
,
C.
, and
Kwok
,
C. Y.
,
2017
, “
Implementation of Rotational Resistance Models: A Critical Appraisal
,”
Particuology
,
34
, pp.
14
23
.
18.
Wilson
,
R.
,
Dini
,
D.
, and
Van Wachem
,
B.
,
2017
, “
The Influence of Surface Roughness and Adhesion on Particle Rolling
,”
Powder Technol.
,
312
, pp.
321
333
.
19.
Greenwood
,
J. A.
, and
Williamson
,
J. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
295
(
1442
), pp.
300
319
.
20.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
153
159
.
21.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2014
, “
On the Contact of Curved Rough Surfaces: Contact Behavior and Predictive Formulas
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
111004
.
22.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2012
, “
Asperity Micro-Contact Models as Applied to the Deformation of Rough Line Contact
,”
Tribol. Int.
,
52
, pp.
61
74
.
23.
Pastewka
,
L.
, and
Robbins
,
M. O.
,
2016
, “
Contact Area of Rough Spheres: Large Scale Simulations and Simple Scaling Laws
,”
Appl. Phys. Lett.
,
108
(
22
), p.
221601
.
24.
Pohrt
,
R.
, and
Popov
,
V. L.
,
2013
, “
Contact Mechanics of Rough Spheres: Crossover From Fractal to Hertzian Behavior
,”
Adv. Tribol.
,
2013
, pp.
1
4
.
25.
Iida
,
K.
, and
Ono
,
K.
,
2003
, “
Design Consideration of Contact/Near-Contact Sliders Based on a Rough Surface Contact Model
,”
ASME J. Tribol.
,
125
(
3
), pp.
562
570
.
26.
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2008
, “
Investigation of Contact Stiffness and Contact Damping for Magnetic Storage Head-Disk Interfaces
,”
ASME J. Tribol.
,
130
(
2
), p.
021901
.
27.
Yeo
,
C. D.
,
Katta
,
R. R.
, and
Polycarpou
,
A. A.
,
2009
, “
Improved Elastic Contact Model Accounting for Asperity and Bulk Substrate Deformation
,”
Tribol. Lett.
,
35
(
3
), pp.
191
203
.
28.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
29.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
30.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
31.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
32.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
33.
Jackson
,
R. L.
, and
Kogut
,
L.
,
2006
, “
A Comparison of Flattening and Indentation Approaches for Contact Mechanics Modeling of Single Asperity Contacts
,”
ASME J. Tribol.
,
128
(
1
), pp.
209
212
.
34.
Walton
,
O. R.
, and
Braun
,
R. L.
,
1986
, “
Viscosity, Granular-Temperature, and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks
,”
J. Rheol.
,
30
(
5
), pp.
949
980
.
35.
Walton
,
O. R.
,
1993
, “
Numerical Simulation of Inelastic, Frictional Particle-Particle Interactions
,”
Particle Two Phase Flow
, Vol.
25
, M. C. Roco, ed., Butterworth-Heinemann, Oxford, UK, pp. 884–911.
36.
Ning, Z., and Thornton, C., 1993, “
Elastic-Plastic Impact of Fine Particles With a Surface
,”
Powders and Grains
,
93
, pp. 33–38.
37.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
(
2
), pp.
383
386
.
38.
Vu-Quoc
,
L.
, and
Zhang
,
X.
,
1999
, “
An Elastoplastic Contact Force-Displacement Model in the Normal Direction: Displacementdriven Version
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
455
(
1991
), pp.
4013
4044
.
39.
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Lesburg
,
L.
,
2000
, “
A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
363
371
.
40.
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Lesburg
,
L.
,
2001
, “
Normal and Tangential Force-Displacement Relations for Frictional Elasto-Plastic Contact of Spheres
,”
Int. J. Solids Struct.
,
38
(
36–37
), pp.
6455
6489
.
41.
Rathbone
,
D.
,
Marigo
,
M.
,
Dini
,
D.
, and
van Wachem
,
B.
,
2015
, “
An Accurate Force-Displacement Law for the Modelling of Elastic-Plastic Contacts in Discrete Element Simulations
,”
Powder Technol.
,
282
, pp.
2
9
.
42.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
43.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
.
44.
Ma
,
D.
, and
Liu
,
C.
,
2015
, “
Contact Law and Coefficient of Restitution in Elasto-Plastic Spheres
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121006
.
45.
Wang
,
H.
,
Yin
,
X.
,
Qi
,
X.
,
Deng
,
Q.
,
Yu
,
B.
, and
Hao
,
Q.
,
2017
, “
Experimental and Theoretical Analysis of the Elastic-Plastic Normal Repeated Impacts of a Sphere on a Beam
,”
Int. J. Solids Struct.
,
109
, pp.
131
142
.
46.
Ghaednia
,
H.
,
Pope
,
S. A.
,
Jackson
,
R. L.
, and
Marghitu
,
D. B.
,
2016
, “
A Comprehensive Study of the Elasto-Plastic Contact of a Sphere and a Flat
,”
Tribol. Int.
,
93
, pp.
78
90
.
47.
Abbott
,
E. J.
, and
Firestone
,
F. A.
,
1995
, “
Specifying Surface Quality: A Method Based on Accurate Measurement and Comparison
,”
Spie Milestone Ser. Ms
,
107
, pp.
63
63
.
48.
Francis
,
H. A.
,
1976
, “
Phenomenological Analysis of Plastic Spherical Indentation
,”
ASME J. Eng. Mater. Technol.
,
98
(
3
), pp.
272
281
.
You do not currently have access to this content.