Harnessing reversible snap-through of a dielectric elastomer (DE), which is a mechanism for large deformation provided by an electromechanical instability, for large-volume pumping has proven to be feasible. However, the output volume of snap-through pumping is drastically reduced by adverse pressure gradient, and large-volume pumping under high adverse pressure gradient by a DE pump has not been realized. In this paper, we propose a new mechanism of DE fluid pumping that can address this shortcoming by connecting DE pumps of different membrane stiffnesses serially in a pumping circuit and by harnessing synergistic interactions between neighboring pump units. We build a simple serial DE pump to verify the concept, which consists of two DE membranes. By adjusting the membrane stiffness appropriately, a synergistic effect is observed, where the snap-through of membrane 1 triggers the snap-through of membrane 2, ensuring that a large volume (over 70 ml/cycle) can be achieved over a wide range of large adverse pressure gradients. In comparison, the conventional single DE pump's pumping volume rapidly decreased beyond a low adverse pressure gradient of 0.196 kPa. At the pressure difference of 0.98 kPa, the serial DE pump's pumping volume is 4185.1% larger than that of the conventional DE pump. This pumping mechanism is customizable for various pressure ranges and enables a new approach to design DE-based soft pumping devices such as a DE total artificial heart, which requires large-volume pumping over a wide range of pressure difference.

References

References
1.
Pelrine
,
R.
,
2000
, “
Pelrine, R. High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
2.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2015
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater
,
28
(
2
), pp.
231
238
.
3.
Qin
,
L.
,
Cao
,
J.
,
Tang
,
Y.
, and
Zhu
,
J.
,
2018
, “
Soft Freestanding Planar Artificial Muscle Based on Dielectric Elastomer Actuator
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051001
.
4.
Zhang
,
H.
,
Wang
,
Y.
,
Godaba
,
H.
,
Khoo
,
B. C.
,
Zhang
,
Z.
, and
Zhu
,
J.
,
2017
, “
Harnessing Dielectric Breakdown of Dielectric Elastomer to Achieve Large Actuation
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121011
.
5.
Yang
,
C. H.
,
Zhou
,
S.
,
Shian
,
S.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2017
, “
Organic Liquid-Crystal Devices Based on Ionic Conductors
,”
Mater. Horiz.
,
4
(
6
), pp.
1102
1109
.
6.
Keplinger
,
C.
,
Sun
,
J. Y.
,
Foo
,
C. C.
,
Rothemund
,
P.
,
Whitesides
,
G. M.
, and
Suo
,
Z.
,
2013
, “
Stretchable, Transparent, Ionic Conductors
,”
Science
,
341
(
6149
), pp.
984
987
.
7.
Wang
,
Y.
, and
Zhu
,
J.
,
2016
, “
Artificial Muscles for Jaw Movements
,”
Extreme Mech. Lett.
,
6
, pp.
88
95
.
8.
Teh
,
Y. S.
, and
Koh
,
S. J. A.
,
2016
, “
Giant Continuously-Tunable Actuation of a Dielectric Elastomer Ring Actuator
,”
Extreme Mech. Lett.
,
9
, pp.
195
203
.
9.
McKay
,
T. G.
,
O'Brien
,
B. M.
,
Calius
,
E. P.
, and
Anderson
,
I. A.
,
2011
, “
Soft Generators Using Dielectric Elastomers
,”
Appl. Phys. Lett.
,
98
(
14
), pp.
2009
2012
.
10.
Liu
,
J.
,
Mao
,
G.
,
Huang
,
X.
,
Zou
,
Z.
, and
Qu
,
S.
,
2015
, “
Enhanced Compressive Sensing of Dielectric Elastomer Sensor Using a Novel Structure
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101004
.
11.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
,
Zeng
,
Z.
,
Huang
,
Z.
,
Luo
,
Y.
,
Xie
,
T.
, and
Yang
,
W.
,
2017
, “
Fast-Moving Soft Electronic Fish
,”
Sci. Adv.
,
3
(
4
), p.
e1602045
.
12.
Carpi
,
F.
,
Menon
,
C.
, and
De Rossi
,
D.
,
2010
, “
Electroactive Elastomeric Actuator for All-Polymer Linear Peristaltic Pumps
,”
IEEE/ASME Trans. Mechatronics
,
15
(
3
), pp.
460
470
.
13.
Lotz
,
P.
,
Matysek
,
M.
, and
Schlaak
,
H. F.
,
2011
, “
Fabrication and Application of Miniaturized Dielectric Elastomer Stack Actuators
,”
IEEE/ASME Transactions on Mechatronics
,
16
(
1
), pp.
58
66
.
14.
Mao
,
G.
,
Huang
,
X.
,
Liu
,
J.
,
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2015
, “
Dielectric Elastomer Peristaltic Pump Module With Finite Deformation
,”
Smart Mater. Struct.
,
24
(
7
), p.
075026
.
15.
Ho
,
S.
,
Banerjee
,
H.
,
Foo
,
Y. Y.
,
Godaba
,
H.
,
Aye
,
W. M. M.
,
Zhu
,
J.
, and
Yap
,
C. H.
,
2017
, “
Experimental Characterization of a Dielectric Elastomer Fluid Pump and Optimizing Performance Via Composite Materials
,”
J. Intell. Mater. Syst. Struct.
,
28
(
20
), pp.
3054
3065
.
16.
Li
,
Z.
,
Wang
,
Y.
,
Foo
,
C. C.
,
Godaba
,
H.
,
Zhu
,
J.
, and
Yap
,
C. H.
,
2017
, “
The Mechanism for Large-Volume Fluid Pumping Via Reversible Snap-Through of Dielectric Elastomer
,”
J. Appl. Phys.
,
122
(
8
), p.
084503
.
17.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and
deBotton
,
G.
,
2012
, “
Snap-Through Actuation of Thick-Wall Electroactive Balloons
,”
Int. J. Non. Linear. Mech.
,
47
(
2
), pp.
206
209
.
18.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2012
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation
,”
Soft Matter
,
8
(
2
), pp.
285
288
.
19.
Li
,
Z.
,
Zhu
,
J.
,
Foo
,
C. C.
, and
Yap
,
C. H.
,
2017
, “
A Robust Dual-Membrane Dielectric Elastomer Actuator for Large Volume Fluid Pumping Via Snap-Through
,”
Appl. Phys. Lett.
,
111
(
21
), p.
212901
.
20.
Marasco
,
S. F.
,
Lukas
,
G.
,
McDonald
,
M.
,
McMillan
,
J.
, and
Ihle
,
B.
,
2008
, “
Review of ECMO (Extra Corporeal Membrane Oxygenation) Support in Critically Ill Adult Patients
,”
Heart Lung Circ.
,
17
(
Suppl. 4
), pp.
S41
S47
.
21.
Bartlett
,
R. H.
,
2016
, “
ECMO: The Next Ten Years
,”
Egypt. J. Crit. Care Med.
,
4
(
1
), pp.
7
10
.
You do not currently have access to this content.