An adaptive vibration isolation system is proposed in this paper to combine the advantages of both linear and nonlinear isolators. Because of the proposed structural piecewise characteristics for different levels of response, the stiffness and damping properties could be designed according to the vibration performances. The adaptive stiffness and damping properties are achieved by the joined utilization of symmetrical precompression triangle-like structure (TLS) and column frame with cam. In order to design the control mechanism with optimum structural parameters, nonlinear vibration performances are analyzed by using averaging method and singularity theory. The parameter plane is divided into transition sets, and then the optimization criterions for structural design are provided according to multiple nonlinear vibration performances including frequency band for effective isolation, multisteady state band and resonance peak, etc. The experiment is carried out to verify the theoretical selection of desirable parameters and indicates the advantages and improvement of vibration isolation/suppression brought by the structural property adaptation. This study provides a novel method of achieving structural property adaptation for the improvement of isolation effectiveness, which shows the intelligent realization by passive components.

References

References
1.
Mei
,
Y. U.
,
2010
, “
Research Review on Measurement and Evaluation Methods of Environmental Vibration for Precision Instruments
,”
J. Vib. Shock
,
29
(
8
), pp.
214
216
.
2.
Zhang
,
H. C.
,
Xu
,
D. L.
,
Lu
,
C.
,
Xia
,
S. Y.
,
Qi
,
E. R.
,
Hu
,
J. J.
, and
Wu, Y. S.
,
2015
, “
Network Dynamic Stability of Floating Airport Based on Amplitude Death
,”
Ocean Eng.
,
104
, pp.
129
139
.
3.
Zhang
,
H.
,
Xu
,
D.
,
Lu
,
C.
,
Qi
,
E.
,
Hu
,
J.
, and
Wu
,
Y.
,
2015
, “
Amplitude Death of a Multi-Module Floating Airport
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2385
2394
.
4.
Oh
,
H. U.
,
Lee
,
K. J.
, and
Jo
,
M. S.
,
2013
, “
A Passive Launch and On-Orbit Vibration Isolation System for the Spaceborne Cryocooler
,”
Aerosp. Sci. Technol.
,
28
(
1
), pp.
324
331
.
5.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2011
, “
A Vibration Isolation System in Low Frequency Excitation Region Using Negative Stiffness Structure for Vehicle Seat
,”
J. Sound Vib.
,
330
(
26
), pp.
6311
6335
.
6.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.
7.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Lopes
,
V.
, Jr.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.
8.
Shaw
,
A. D.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2013
, “
Dynamic Analysis of High Static Low Dynamic Stiffness Vibration Isolation Mounts
,”
J. Sound Vib.
,
332
(
6
), pp.
1437
1455
.
9.
Abolfathi
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Tang
,
B.
,
2015
, “
On the Effects of Mistuning a Force-Excited System Containing a Quasi-Zero-Stiffness Vibration Isolator
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
044502
.
10.
Valeev
,
A.
,
Zotov
,
A.
, and
Kharisov
,
S.
,
2015
, “
Designing of Compact Low Frequency Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Low Freq. Noise Vib. Active Control
,
34
(
4
), pp.
459
473
.
11.
Robertson
,
W. S.
,
Kidner
,
M. R. F.
,
Cazzolato
,
B. S.
, and
Zander
,
A. C.
,
2011
, “
Corrigendum to: Theoretical Design Parameters for a Quasi-Zero Stiffness Magnetic Spring for Vibration Isolation [J. Sound Vib. 326(1–2) (2009) 88–103]
,”
J. Sound Vib.
,
330
(
1
), p.
154
.
12.
Huang
,
X.
,
Liu
,
X.
, and
Hua
,
H.
,
2014
, “
On the Characteristics of an Ultra-Low Frequency Nonlinear Isolator Using Sliding Beam as Negative Stiffness
,”
J. Mech. Sci. Technol.
,
28
(
3
), pp.
813
822
.
13.
Perlovich
,
G. L.
,
Volkova
,
T. V.
,
Manin
,
A. N.
, and
Bauer-Brandl
,
A.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.
14.
Liu
,
X.
,
Huang
,
X.
, and
Hua
,
H.
,
2013
, “
On the Characteristics of a Quasi-Zero Stiffness Isolator Using Euler Buckled Beam as Negative Stiffness Corrector
,”
J. Sound Vib.
,
332
(
14
), pp.
3359
3376
.
15.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
Demonstrator to Show the Effects of Negative Stiffness on the Natural Frequency of a Simple Oscillator
,”
Proc. Inst. Mech. Eng. Part C
,
222
(
7
), pp.
1189
1192
.
16.
Tian
,
R.
,
Cao
,
Q.
, and
Yang
,
S.
,
2009
, “
The Codimension-Two Bifurcation for the Recent Proposed SD Oscillator
,”
Nonlinear Dyn.
,
59
(
1
), pp.
19
27
.
17.
Fey
,
R. H. B.
,
Wouters
,
R. M. T.
, and
Nijmeijer
,
H.
,
2010
, “
Proportional and Derivative Control for Steady-State Vibration Mitigation in a Piecewise Linear Beam System
,”
Nonlinear Dyn.
,
60
(
4
), pp.
535
549
.
18.
Chatterjee
,
S.
,
Ghosh
,
A.
, and
Mallik
,
A. K.
,
1996
, “
Periodic Response of Piecewise Non-Linear Oscillators Under Harmonic Excitation
,”
J. Sound Vib.
,
191
(
1
), pp.
129
144
.
19.
Gao
,
X.
, and
Chen
,
Q.
,
2014
, “
Theoretical Analysis and Numerical Simulation of Resonances and Stability of a Piecewise Linear-Nonlinear Vibration Isolation System
,”
Shock Vib.
,
2014
, p. 803275.
20.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,”
J. Sound Vib.
,
346
(
1
), pp.
53
69
.
21.
Wang
,
X. L.
,
Zhou
,
J. X.
, and
Dao-Lin
,
X. U.
,
2014
, “
On Piecewise Nonlinear Dynamic Characteristics of a New-Type Quasi-Zero-Stiffness Vibration Isolator With Cam-Roller-Spring Mechanism
,”
Appl. Math. Mech.
,
35
(
1
), pp.
50
62
.
22.
Leine
,
R. I.
, and
Nijmeijer
,
H.
,
2004
,
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
,
Springer
,
Berlin
.
23.
Leine
,
R. I.
,
Campen
,
D. H. V.
, and
Vrande
,
B. L. V. D.
,
2000
, “
Bifurcations in Nonlinear Discontinuous Systems
,”
Nonlinear Dyn.
,
23
(
2
), pp.
105
164
.
24.
Arnold
,
V. I.
,
Goryunov
,
V. V.
,
Lyashko
,
O. V.
, and
Vasil'Ev
,
V. A.
,
1998
,
Singularity Theory I
,
Springer
,
Berlin
.
25.
Cao
,
Q. J.
,
Zhang
,
T. D.
, and
Li
,
J. P.
,
1999
, “
A Study of the Static and Global Bifurcations for Duffing Equation
,”
Appl. Math. Mech.
,
20
(
12
), pp.
1413
1420
.
26.
Qin
,
Z.
, and
Chen
,
Y.
,
2010
, “
Singular Analysis of Bifurcation Systems With Two Parameters
,”
Acta Mech. Sin.
,
26
(
3
), pp.
501
507
.
27.
Hao
,
Z.
,
Cao
,
Q.
, and
Wiercigroch
,
M.
,
2017
, “
Nonlinear Dynamics of the Quasi-Zero-Stiffness SD Oscillator Based Upon the Local and Global Bifurcation Analyses
,”
Nonlinear Dyn.
,
87
(
2
), pp.
987
1014
.
28.
Han
,
Y.
,
Cao
,
Q.
, and
Ji
,
J.
,
2015
, “
Nonlinear Dynamics of a Smooth and Discontinuous Oscillator With Multiple Stability
,”
Int. J. Bifurcation Chaos
,
25
(
13
), p.
1530038
.
29.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Effect of the System Imperfections on the Dynamic Response of a High-Static-Low-Dynamic Stiffness Vibration Isolator
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1157
1167
.
30.
Lan
,
C. C.
,
Yang
,
S. A.
, and
Wu
,
Y. S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
.
31.
Zhou
,
N.
, and
Liu
,
K.
,
2010
, “
A Tunable High-Static–Low-Dynamic Stiffness Vibration Isolator
,”
J. Sound Vib.
,
329
(
9
), pp.
1254
1273
.
32.
Sun
,
X.
, and
Jing
,
X.
,
2015
, “
Multi-Direction Vibration Isolation With Quasi-Zero Stiffness by Employing Geometrical Nonlinearity
,”
Mech. Syst. Signal Process.
,
62–63
, pp.
149
163
.
You do not currently have access to this content.