Shale is a typical layered and anisotropic material whose properties are characterized primarily by locally oriented anisotropic clay minerals and naturally formed bedding planes. The debonding of the bedding planes will greatly influence the shale fracking to form a large-scale highly permeable fracture network, named stimulated reservoir volume (SRV). In this paper, both theoretical and numerical models are developed to quantitatively predict the growth of debonding zone in layered shale under fracking, and the good agreement is obtained between the theoretical and numerical prediction results. Two dimensionless parameters are proposed to characterize the conditions of tensile and shear debonding in bedding planes. It is found that debonding is mainly caused by the shear failure of bedding planes in the actual reservoir. Then the theoretical model is applied to design the perforation cluster spacing to optimize SRV, which is important in fracking. If the spacing is too small, there will be overlapping areas of SRV and the fracking efficiency is low. If the spacing is too large, there will be stratum that cannot be stimulated. So another two dimensionless parameters are proposed to evaluate the size and efficiency of stimulating volume at the same time. By maximizing these two parameters, the optimal perforation cluster spacing and SRV can be quantitatively calculated to guide the fracking treatment design. These results are comparable with data from the field engineering.

References

References
1.
Bažant
,
Z. P.
,
Salviato
,
M.
,
Chau
,
V. T.
,
Visnawathan
,
H.
, and
Zubelewicz
,
A.
,
2014
, “
Why Fracking Works
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101010
.
2.
Fisher
,
M. K.
,
Wright
,
C. A.
,
Davidson
,
B. M.
,
Goodwin
,
A. K.
,
Fielder
,
E. O.
,
Buckler
,
W. S.
, and
Steinsberger
,
N. P.
,
2002
, “
Integrating Fracture Mapping Technologies to Optimize Stimulations in the Barnett Shale
,” SPE Annual Technical Conference and Exhibition, Sept. 29–Oct. 2, San Antonio, TX,
SPE
Paper No. SPE-77441-MS.
3.
Maxwell
,
S. C.
,
Urbancic
,
T. I.
,
Steinsberger
,
N.
, and
Zinno
,
R.
,
2002
, “
Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett Shale
,” SPE Annual Technical Conference and Exhibition, Sept. 29–Oct. 2, San Antonio, TX,
SPE
Paper No. SPE-77440-MS.
4.
Nassir
,
M.
,
Settari
,
A.
, and
Wan
,
R. G.
,
2014
, “
Prediction of Stimulated Reservoir Volume and Optimization of Fracturing in Tight Gas and Shale With a Fully Elasto-Plastic Coupled Geomechanical Model
,”
SPE J.
,
19
(
5
), pp.
771
785
.
5.
Li
,
W.
,
Rezakhani
,
R.
,
Jin
,
C.
,
Zhou
,
X.
, and
Cusatis
,
G.
,
2017
, “
A Multiscale Framework for the Simulation of the Anisotropic Mechanical Behavior of Shale
,”
Int. J. Numer. Anal. Methods Geomech.
,
41
(14), pp. 1494–1522.
6.
Bennett
,
K. C.
,
Berla
,
L. A.
,
Nix
,
W. D.
, and
Borja
,
R. I.
,
2015
, “
Instrumented Nanoindentation and 3D Mechanistic Modeling of a Shale at Multiple Scales
,”
Acta Geotech.
,
10
(
1
), pp.
1
14
.
7.
Bobko
,
C.
, and
Ulm
,
F.-J.
,
2008
, “
The Nano-Mechanical Morphology of Shale
,”
Mech. Mater.
,
40
(
4–5
), pp.
318
337
.
8.
Slatt
,
R. M.
, and
Abousleiman
,
Y.
,
2011
, “
Merging Sequence Stratigraphy and Geomechanics for Unconventional Gas Shales
,”
Leading Edge
,
30
(
3
), pp.
274
282
.
9.
Gale
,
J. F. W.
,
Laubach
,
S. E.
,
Olson
,
J. E.
,
Eichhuble
,
P.
, and
Fall
,
A.
,
2014
, “
Natural Fractures in Shale: A Review and New Observations
,”
AAPG Bull.
,
98
(
11
), pp.
2165
2216
.
10.
Blanton
,
T. L.
,
1986
, “
Propagation of Hydraulically and Dynamically Induced Fractures in Naturally Fractured Reservoirs
,”
SPE Unconventional Gas Technology Symposium
, Louisville, Kentucky, May 18–21,
SPE
Paper No. SPE-15261-MS.
11.
Warpinski
,
N. R.
, and
Teufel
,
L. W.
,
1987
, “
Influence of Geologic Discontinuities on Hydraulic Fracture Propagation
,”
SPE J.
,
39
(
2
), pp.
209
220
.
12.
Zhou
,
J.
,
Chen
,
M.
,
Jin
,
Y.
, and
Zhang
,
G.-Q.
,
2008
, “
Analysis of Fracture Propagation Behavior and Fracture Geometry Using a Tri-Axial Fracturing System in Naturally Fractured Reservoirs
,”
Int. J. Rock Mech. Min. Sci.
,
45
(
7
), pp.
1143
1152
.
13.
Chuprakov
,
D.
,
Melchaeva
,
O.
, and
Prioul
,
R.
,
2013
, “
Injection-Sensitive Mechanics of Hydraulic Fracture Interaction With Discontinuities
,” 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, June 23–26, Paper No.
ARMA-2013-252
.https://www.onepetro.org/conference-paper/ARMA-2013-252
14.
Potluri
,
N. K.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2005
, “
The Effect of Natural Fractures on Hydraulic Fracture Propagation
,”
SPE European Formation Damage Conference
, Sheveningen, The Netherlands, May 25–27,
SPE
Paper No. SPE-94568-MS.
15.
Beugelsdijk
,
L. J. L.
,
de Pater
,
C. J.
, and
Sato
,
K.
,
2000
, “
Experimental Hydraulic Fracture Propagation in a Multi-Fractured Medium
,”
SPE Asia Pacific Conference on Integrated Modelling for Asset Management
, Yokohama, Japan, Apr. 25–26,
SPE
Paper No. SPE-59419-MS.
16.
Zhang
,
X.
,
Jeffrey
,
R. G.
, and
Thiercelin
,
M.
,
2009
, “
Mechanics of Fluid-Driven Fracture Growth in Naturally Fractured Reservoirs With Simple Network Geometries
,”
J. Geophys. Res. Solid Earth
,
114
(
B12
), p. B12406.
17.
Dahi-Taleghani
,
A.
, and
Olson
,
J. E.
,
2011
, “
Numerical Modeling of Multistranded-Hydraulic-Fracture Propagation: Accounting for the Interaction Between Induced and Natural Fractures
,”
SPE J.
,
16
(
3
), pp.
575
581
.
18.
Guo
,
J.
,
Zhao
,
X.
,
Zhu
,
H.
,
Zhang
,
X.
, and
Pan
,
R.
,
2015
, “
Numerical Simulation of Interaction of Hydraulic Fracture and Natural Fracture Based on the Cohesive Zone Finite Element Method
,”
J. Nat. Gas Sci. Eng.
,
25
, pp.
180
188
.
19.
Jang
,
Y.
,
Kim
,
J.
,
Ertekin
,
T.
, and
Sung
,
W.
,
2016
, “
Fracture Propagation Model Using Multiple Planar Fracture With Mixed Mode in Naturally Fractured Reservoir
,”
J. Pet. Sci. Eng.
,
144
, pp.
19
27
.
20.
Miehe
,
C.
,
Mauthe
,
S.
, and
Teichtmeister
,
S.
,
2015
, “
Minimization Principles for the Coupled Problem of Darcy–Biot-Type Fluid Transport in Porous Media Linked to Phase Field Modeling of Fracture
,”
J. Mech. Phys. Solids
,
82
, pp.
186
217
.
21.
Wang
,
T.
,
Liu
,
Z. L.
,
Zeng
,
Q. L.
,
Gao
,
Y.
, and
Zhuang
,
Z.
, 2017, “
XFEM Modeling of Hydraulic Fracture in Porous Rocks With Natural Fractures
,”
Sci. China-Phys. Mech. Astron.
,
60
(8), p. 084612.
22.
Renshaw
,
C. E.
, and
Pollard
,
D. D.
,
1995
, “
An Experimentally Verified Criterion for Propagation Across Unbounded Frictional Interfaces in Brittle, Linear Elastic Materials
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
32
(
3
), pp.
237
249
.
23.
Taleghani
,
A. D.
, and
Olson
,
J. E.
,
2014
, “
How Natural Fractures Could Affect Hydraulic-Fracture Geometry
,”
SPE J.
,
19
(
1
), pp.
161
171
.
24.
Gu
,
H.
, and
Weng
,
X.
,
2010
, “
Criterion for Fractures Crossing Frictional Interfaces at Non-Orthogonal Angles
,”
44th U.S. Rock Mechanics Symposium and Fifth U.S.–Canada Rock Mechanics Symposium
, Salt Lake City, Utah, June 27–30, Paper No.
ARMA-10-198
https://www.onepetro.org/conference-paper/ARMA-10-198.
25.
Zhang
,
X.
, and
Jeffrey
,
R. G.
,
2006
, “
The Role of Friction and Secondary Flaws on Deflection and Re-Initiation of Hydraulic Fractures at Orthogonal Pre-Existing Fractures
,”
Geophys. J. Int.
,
166
(
3
), pp.
1454
1465
.
26.
Chau
,
V. T.
,
Bazant
,
Z. P.
, and
Su
,
Y.
,
2016
, “
Growth Model for Large Branched Three-Dimensional Hydraulic Crack System in Gas or Oil Shale
,”
Philos. Trans. Ser. A
,
374
(
2078
), p. 20150418.
27.
Chau
,
V. T.
,
Li
,
C.
,
Rahimi-Aghdam
,
S.
, and
Bažant
,
Z. P.
,
2017
, “
The Enigma of Large-Scale Permeability of Gas Shale: Pre-Existing or Frac-Induced?
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
061008
.
28.
Mayerhofer
,
M. J.
,
Lolon
,
E.
,
Warpinski
,
N. R.
,
Cipolla
,
C. L.
,
Walser
,
D. W.
, and
Rightmire
,
C. M.
,
2010
, “
What Is Stimulated Reservoir Volume?
,”
SPE Prod. Oper.
,
25
(
1
), pp.
89
98
.
29.
Grassl
,
P.
,
Fahy
,
C.
,
Gallipoli
,
D.
, and
Wheeler
,
S. J.
,
2015
, “
On a 2D Hydro-Mechanical Lattice Approach for Modelling Hydraulic Fracture
,”
J. Mech. Phys. Solids
,
75
, pp.
104
118
.
30.
Zeng
,
X.
, and
Wei
,
Y.
,
2017
, “
Crack Deflection in Brittle Media With Heterogeneous Interfaces and Its Application in Shale Fracking
,”
J. Mech. Phys. Solids
,
101
, pp.
235
249
.
31.
Li
,
C.
,
Caner
,
F. C.
,
Chau
,
V. T.
, and
Bažant
,
Z. P.
,
2017
, “
Spherocylindrical Microplane Constitutive Model for Shale and Other Anisotropic Rocks
,”
J. Mech. Phys. Solids.
,
103
, pp. 155–178.
32.
Bažant
,
Z. P.
, and
Chau
,
V. T.
,
2016
, “
Recent Advances in Global Fracture Mechanics of Growth of Large Hydraulic Crack Systems in Gas or Oil Shale: A Review
,”
New Frontiers in Oil and Gas Exploration
,
C.
Jin
and
G.
Cusatis
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
435
460
.
33.
Cipolla
,
C. L.
,
Weng
,
X.
,
Mack
,
M. G.
,
Ganguly
,
U.
,
Gu
,
H.
,
Kresse
,
O.
, and
Cohen
,
C. E.
,
2011
, “
Integrating Microseismic Mapping and Complex Fracture Modeling to Characterize Hydraulic Fracture Complexity
,”
SPE Hydraulic Fracturing Technology Conference
, The Woodlands, TX, Jan. 24–26,
SPE
Paper No. SPE-140185-MS.
34.
Weng
,
X.
,
Kresse
,
O.
,
Cohen
,
C.-E.
,
Wu
,
R.
, and
Gu
,
H.
,
2011
, “
Modeling of Hydraulic-Fracture-Network Propagation in a Naturally Fractured Formation
,”
SPE Prod. Oper.
,
26
(
4
), pp.
368
380
.
35.
Wu
,
R.
,
Kresse
,
O.
,
Weng
,
X.
,
Cohen
,
C.-E.
, and
Gu
,
H.
,
2012
, “
Modeling of Interaction of Hydraulic Fractures in Complex Fracture Networks
,”
SPE Hydraulic Fracturing Technology Conference
, The Woodlands, TX, Feb. 6–8,
SPE
Paper No. SPE-152052-MS.
36.
Wu
,
K.
, and
Olson
,
J. E.
,
2015
, “
Simultaneous Multifracture Treatments: Fully Coupled Fluid Flow and Fracture Mechanics for Horizontal Wells
,”
SPE J.
,
20
(
2
), pp.
337
346
.
37.
Zeng
,
Q.
,
Liu
,
Z.
,
Wang
,
T.
,
Gao
,
Y.
, and
Zhuang
,
Z.
,
2017
, “
Fully Coupled Simulation of Multiple Hydraulic Fractures to Propagate Simultaneously From a Perforated Horizontal Wellbore
,”
Comput. Mech.
, epub.
38.
Lecampion
,
B.
, and
Desroches
,
J.
,
2015
, “
Simultaneous Initiation and Growth of Multiple Radial Hydraulic Fractures From a Horizontal Wellbore
,”
J. Mech. Phys. Solids
,
82
, pp.
235
258
.
39.
Peirce
,
A.
, and
Bunger
,
A.
,
2015
, “
Interference Fracturing: Nonuniform Distributions of Perforation Clusters That Promote Simultaneous Growth of Multiple Hydraulic Fractures
,”
SPE J.
,
20
(2), p. 172500-PA.
40.
Liu
,
C.
,
Shi
,
F.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Deng
,
D.
,
Wang
,
X.
,
Liu
,
H.
, and
Wu
,
H.
,
2017
, “
High Injection Rate Stimulation for Improving the Fracture Complexity in Tight-Oil Sandstone Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
133
141
.
41.
Shi
,
F.
,
Wang
,
X.
,
Liu
,
C.
,
Liu
,
H.
, and
Wu
,
H.
,
2017
, “
An XFEM-Based Method With Reduction Technique for Modeling Hydraulic Fracture Propagation in Formations Containing Frictional Natural Fractures
,”
Eng. Fract. Mech.
,
173
, pp.
64
90
.
42.
Zhao
,
J.
,
Chen
,
X.
,
Li
,
Y.
, and
Fu
,
B.
,
2016
, “
Simulation of Simultaneous Propagation of Multiple Hydraulic Fractures in Horizontal Wells
,”
J. Pet. Sci. Eng.
,
147
, pp.
788
800
.
43.
Lecampion
,
B.
,
Desroches
,
J.
,
Weng
,
X.
,
Burghardt
,
J.
, and
Brown
,
J. E.
,
2015
, “
Can We Engineer Better Multistage Horizontal Completions? Evidence of the Importance of Near-Wellbore Fracture Geometry From Theory, Lab and Field Experiments
,”
SPE Hydraulic Fracturing Technology Conference
, The Woodlands, TX, Feb. 3–5,
SPE
Paper No. SPE-173363-MS.
44.
Nagel
,
N.
,
Zhang
,
F.
,
Sanchez-Nagel
,
M.
,
Lee
,
B.
, and
Agharazi
,
A.
,
2013
, “
Stress Shadow Evaluations for Completion Design in Unconventional Plays
,”
SPE Unconventional Resources Conference
, Calgary, AB, Canada, Nov. 5–7,
SPE
Paper No. SPE-167128-MS.
45.
Chen
,
Z.
,
2012
, “
Finite Element Modelling of Viscosity-Dominated Hydraulic Fractures
,”
J. Pet. Sci. Eng.
,
88–89
, pp.
136
144
.
46.
Hoek
,
E.
,
Kaiser
,
P. K.
, and
Bawden
,
W. F.
,
1995
,
Support of Underground Excavations in Hard Rock
,
Taylor & Francis
, Rotterdam, The Netherlands.
47.
Soundararaiah
,
Q. Y.
,
Karunaratne
,
B. S. B.
, and
Rajapakse
,
R. M. G.
,
2009
, “
Montmorillonite Polyaniline Nanocomposites: Preparation, Characterization and Investigation of Mechanical Properties
,”
Mater. Chem. Phys.
,
113
(
2–3
), pp.
850
855
.
48.
Liu
,
Y.
,
2015
, “
Fracture Toughness Assessment of Shales By Nanoindentation
,”
Master's thesis
, University of Massachusetts Amherst, Amherst, MA.http://scholarworks.umass.edu/cee_geotechnical/4/
49.
Kahraman
,
S.
, and
Altindag
,
R.
,
2004
, “
A Brittleness Index to Estimate Fracture Toughness
,”
Int. J. Rock Mech. Min. Sci.
,
41
(
2
), pp.
343
348
.
50.
Stoeckhert
,
F.
,
Molenda
,
M.
,
Brenne
,
S.
, and
Alber
,
M.
,
2015
, “
Fracture Propagation in Sandstone and Slate—Laboratory Experiments, Acoustic Emissions and Fracture Mechanics
,”
J. Rock Mech. Geotech. Eng.
,
7
(
3
), pp.
237
249
.
51.
Muskhelishvili
,
N. I.
,
2013
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Springer Science & Business Media
, Berlin.
52.
Detournay
,
E.
,
2004
, “
Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks
,”
Int. J. Geomech.
,
4
(
1
), pp.
35
45
.
53.
Hu
,
J.
, and
Garagash
,
D. I.
,
2010
, “
Plane-Strain Propagation of a Fluid-Driven Crack in a Permeable Rock With Fracture Toughness
,”
ASCE J. Eng. Mech.
,
136
(
9
), pp.
1152
1166
.
You do not currently have access to this content.