Symmetrical load on the crack surfaces is found in many fluid–solid problems. The combined effect of symmetrical normal and shear stresses is investigated, which impacts on the displacement and stress fields and the predictions of crack initiation and deflection. The boundary integral equations of displacement and stress fields are formulated using the integral-transform method. The equations of the displacement and stress are reduced using the Abel integral equations. The analytical solution of the full space for uniform normal and shear stresses is obtained. The asymptotic solution of the displacement of the crack surface is obtained near the crack tip under specific normal and shear stresses. Results show that shear stress tends to inhibit the crack, and the predictions of crack initiation and deflection could be inappropriate for a slit crack under a singular shear stress. This study may be useful for future investigations of the fluid–solid problems and help to understand the hydraulic fracturing.

References

References
1.
Spence
,
D. A.
, and
Sharp
,
P.
,
1985
, “
Self-Similar Solutions for Elastohydrodynamic Cavity Flow
,”
Proc. R. Soc. London, Ser. A
,
400
(
1819
), pp.
289
313
.
2.
Tsai
,
V. C.
, and
Rice
,
J. R.
,
2010
, “
A Model for Turbulent Hydraulic Fracture and Application to Crack Propagation at Glacier Beds
,”
J. Geophys. Res.: Earth Surf.
,
115
(
F3
), ▪.
3.
Detournay
,
E.
,
2016
, “
Mechanics of Hydraulic Fractures
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
311
339
.
4.
Wrobel
,
M.
,
Mishuris
,
G.
, and
Piccolroaz
,
A.
,
2017
, “
Energy Release Rate in Hydraulic Fracture: Can We Neglect an Impact of the Hydraulically Induced Shear Stress?
,”
Int. J. Eng. Sci.
,
111
, pp.
28
51
.
5.
Yang
,
F. Q.
, and
Zhao
,
Y. P.
,
2016
, “
The Effect of a Capillary Bridge on the Crack Opening of a Penny Crack
,”
Soft Matter
,
12
(
5
), pp.
1586
1592
.
6.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
,
221
(582–593), pp.
163
198
.
7.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
(▪), pp.
361
364
.
8.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
9.
Sih
,
G. C.
,
1974
, “
Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems
,”
Int. J. Fract.
,
10
(
3
), pp.
305
321
.
10.
Sneddon
,
I. N.
, and
Lowengrub
,
M.
,
1969
,
Crack Problems in the Classical Theory of Elasticity
,
Wiley
,
New York
.
11.
Williams
,
M. L.
,
1956
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
24
(
1
), pp.
109
114
.
12.
Geertsma
,
J.
, and
de Klerk
,
F.
,
1969
, “
A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures
,”
J. Pet. Technol.
,
21
(
12
), pp.
1571
1581
.
13.
Desroches
,
J.
,
Detournay
,
E.
,
Lenoach
,
B.
,
Papanastasiou
,
P.
,
Pearson
,
J. R. A.
,
Thiercelin
,
M.
, and
Cheng
,
A.
,
1994
, “
The Crack Tip Region in Hydraulic Fracturing
,”
Proc. R. Soc. London, Ser. A
,
447
(
1929
), pp.
39
48
.
14.
Jeffrey
,
R.
,
1989
, “
The Combined Effect of Fluid Lag and Fracture Toughness on Hydraulic Fracture Propagation
,”
Low Permeability Reservoirs Symposium
, Society of Petroleum Engineers, Paper No. 18957, pp.
269
276
.
15.
Advani
,
S.
,
Lee
,
T. S.
,
Dean
,
R. H.
,
Pak
,
C. K.
, and
Avasthi
,
J. M.
,
1997
, “
Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures
,”
Int. J. Numer. Anal. Methods Geomech.
,
21
(
4
), pp.
229
240
.
16.
Garagash
,
D. I.
,
2006
, “
Propagation of a Plane-Strain Hydraulic Fracture With a Fluid Lag: Early-Time Solution
,”
Int. J. Solids Struct.
,
43
(
18
), pp.
5811
5835
.
17.
Yang
,
F.
,
1998
, “
Indentation of an Incompressible Elastic Film
,”
Mech. Mater.
,
30
(
4
), pp.
275
286
.
18.
Gorenflo
,
R.
, and
Vessella
,
S.
,
1991
,
Abel Integral Equations
,
Springer Science & Business Media
,
Berlin
.
19.
Lawn
,
B.
,
1993
,
Fracture of Brittle Solids
,
Cambridge University Press
,
Cambridge, UK
.
20.
Zhao
,
Y. P.
,
2016
,
Modern Continuum Mechanics
(in Chinese),
Science Press
,
Beijing, China
.
21.
Zhao
,
Y. P.
,
2014
,
Nano and Mesoscopic Mechanics
(in Chinese),
Science Press
,
Beijing, China
.
22.
Jeffrey
,
A.
, and
Daniel
,
Z.
,
2007
,
Table of Integrals, Series, and Products
,
Academic Press
,
Burlington, VT
.
You do not currently have access to this content.