In a companion paper,2 we have obtained the closed-form solutions to the stress and strain fields of a two-dimensional Eshelby inclusion. The current work is concerned with the complementary formulation of the displacement. All the formulae are derived in explicit closed-form, based on the degenerate case of a three-dimensional (3D) ellipsoidal inclusion. A benchmark example is provided to validate the present analytical solutions. In conjunction with our previous study, a complete elasticity solution to the classical elliptic cylindrical inclusion is hence documented in Cartesian coordinates for the convenience of engineering applications.

References

References
1.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
(
1226
), pp.
376
396
.
2.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Springer
, Dordrecht, The Netherlands.
3.
Mura
,
T.
,
Shodja
,
H. M.
, and
Hirose
,
Y.
,
1996
, “
Inclusion Problems
,”
ASME Appl. Mech. Rev.
,
49
(
10S
), pp.
S118
S127
.
4.
Rudnicki
,
J. W.
,
2007
, “
Models for Compaction Band Propagation
,”
Rock Physics and Geomechanics in the Study of Reservoirs and Repositories
, Vol.
284
,
Geological Society
,
London
, pp.
107
125
.
5.
Zhou
,
K.
,
Hoh
,
H. J.
,
Wang
,
X.
,
Keer
,
L. M.
,
Pang
,
J. H. L.
,
Song
,
B.
, and
Wang
,
Q. J.
,
2013
, “
A Review of Recent Works on Inclusions
,”
Mech. Mater.
,
60
, pp.
144
158
.
6.
Chiu
,
Y. P.
,
1980
, “
On the Internal Stresses in a Half Plane and a Layer Containing Localized Inelastic Strains or Inclusions
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
313
318
.
7.
Nozaki
,
H.
, and
Taya
,
M.
,
1997
, “
Elastic Fields in a Polygon-Shaped Inclusion With Uniform Eigenstrains
,”
ASME J. Appl. Mech.
,
64
(
3
), pp.
495
502
.
8.
Muskhelishvili
,
N. I.
,
1953
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
P. Noordhoff
,
Groningen, The Netherlands
.
9.
Ru
,
C. Q.
,
1999
, “
Analytic Solution for Eshelby's Problem of an Inclusion of Arbitrary Shape in a Plane or Half-Plane
,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
315
322
.
10.
Jin
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2009
, “
New Green's Function for Stress Field and a Note of Its Application in Quantum-Wire Structures
,”
Int. J. Solids Struct.
,
46
(
21
), pp.
3788
3798
.
11.
Eshelby
,
J.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, Ser. A
,
252
(
1271
), pp.
561
569
.
12.
Jin
,
X.
,
Lyu
,
D.
,
Zhang
,
X.
,
Zhou
,
Q.
,
Wang
,
Q.
, and
Keer
,
L. M.
,
2016
, “
Explicit Analytical Solutions for a Complete Set of the Eshelby Tensors of an Ellipsoidal Inclusion
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121010
.
13.
Jin
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2011
, “
A Closed-Form Solution for the Eshelby Tensor and the Elastic Field Outside an Elliptic Cylindrical Inclusion
,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031009
.
14.
Ju
,
J. W.
, and
Sun
,
L. Z.
,
1999
, “
A Novel Formulation for the Exterior-Point Eshelby's Tensor of an Ellipsoidal Inclusion
,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
570
574
.
15.
Jin
,
X.
,
Wang
,
Z.
,
Zhou
,
Q.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2014
, “
On the Solution of an Elliptical Inhomogeneity in Plane Elasticity by the Equivalent Inclusion Method
,”
J. Elasticity
,
114
(
1
), pp.
1
18
.
16.
Maugis
,
D.
,
2000
,
Contact, Adhesion and Rupture of Elastic Solids
,
Springer
,
Berlin
.
You do not currently have access to this content.