For the development of a new family of implicit higher-order time integration algorithms, mixed formulations that include three time-dependent variables (i.e., the displacement, velocity, and acceleration vectors) are developed. Equal degree Lagrange type interpolation functions in time are used to approximate the dependent variables in the mixed formulations, and the time finite element method and the modified weighted-residual method are applied to the velocity–displacement and velocity–acceleration relations of the mixed formulations. Weight parameters are introduced and optimized to achieve preferable attributes of the time integration algorithms. Specific problems of structural dynamics are used in the numerical examples to discuss some fundamental limitations of the well-known second-order accurate algorithms as well as to demonstrate advantages of using the developed higher-order algorithms.

References

References
1.
Kim
,
S. J.
,
Cho
,
J. Y.
, and
Kim
,
W. D.
,
1997
, “
From the Trapezoidal Rule to Higher-Order Accurate and Unconditionally Stable Time-Integration Method for Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
149
(
1
), pp.
73
88
.
2.
Fung
,
T. C.
,
1998
, “
Complex-Time-Step Newmark Methods With Controllable Numerical Dissipation
,”
Int. J. Numer. Methods Eng.
,
41
(
1
), pp.
65
93
.
3.
Hulbert
,
G. M.
,
1994
, “
A Unified Set of Single-Step Asymptotic Annihilation Algorithms for Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
113
(
1
), pp.
1
9
.
4.
Fung
,
T. C.
,
1999
, “
Weighting Parameters for Unconditionally Stable Higher-Order Accurate Time Step Integration Algorithms. Part 2—Second-Order Equations
,”
Int. J. Numer. Methods Eng.
,
45
(
8
), pp.
971
1006
.
5.
Golley
,
B. W.
,
1996
, “
A Time-Stepping Procedure for Structural Dynamics Using Gauss Point Collocation
,”
Int. J. Numer. Methods Eng.
,
39
(
23
), pp.
3985
3998
.
6.
Fung
,
T. C.
,
2001
, “
Unconditionally Stable Collocation Algorithms for Second Order Initial Value Problems
,”
J. Sound Vib.
,
247
(
2
), pp.
343
365
.
7.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2000
, “
Numerical Solution for Differential Equations of Duffing-Type Non-Linearity Using the Generalized Differential Quadrature Rule
,”
J. Sound Vib.
,
237
(
5
), pp.
805
817
.
8.
Fung
,
T. C.
,
2001
, “
Solving Initial Value Problems by Differential Quadrature Method—Part 2: Second- and Higher-Order Equations
,”
Int. J. Numer. Methods Eng.
,
50
(
6
), pp.
1429
1454
.
9.
Riff
,
R.
, and
Baruch
,
M.
,
1984
, “
Time Finite Element Discretization of Hamilton’s Law of Varying Action
,”
AIAA J.
,
22
(
9
), pp.
1310
1318
.
10.
Bailey
,
C. D.
,
1989
, “
Further Remarks on the Law of Varying Action and the Symbol δ
,”
J. Sound Vib.
,
131
(
2
), pp.
331
344
.
11.
Kim
,
W.
,
Park
,
S.
, and
Reddy
,
J. N.
,
2014
, “
A Cross Weighted-Residual Time Integration Scheme for Structural Dynamics
,”
Int. J. Struct. Stab. Dyn.
,
14
(
6
), p.
1450023
.
12.
Reddy
,
J. N.
,
2006
,
An Introduction to the Finite Element Method
,
3rd ed.
,
McGraw-Hill
,
New York
.
13.
Hilber
,
H. M.
,
1976
, “
Analysis and Design of Numerical Integration Methods in Structural Dynamics
,” Ph.D. thesis, University of California Berkeley, Berkeley, CA.
14.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-Alpha Method
,”
ASME J. Appl. Mech.
,
60
(2), pp. 371–375.
15.
Bathe
,
K. J.
, and
Noh
,
G.
,
2012
, “
Insight Into an Implicit Time Integration Scheme for Structural Dynamics
,”
Comput. Struct.
,
98–99
, pp.
1
6
.
16.
Fung
,
T. C.
,
2003
, “
Numerical Dissipation in Time-Step Integration Algorithms for Structural Dynamic Analysis
,”
Prog. Struct. Eng. Mater.
,
5
(
3
), pp.
167
180
.
17.
Fung
,
T. C.
,
2001
, “
Solving Initial Value Problems by Differential Quadrature Method—Part 1: First-Order Equations
,”
Int. J. Numer. Methods Eng.
,
50
(
6
), pp.
1411
1427
.
18.
Reddy
,
J. N.
,
2017
,
Energy Principles and Variational Methods in Applied Mechanics
,
3rd ed.
, Wiley, New York.
19.
Putcha
,
N. S.
, and
Reddy
,
J. N.
,
1986
, “
A Refined Mixed Shear Flexible Finite Element for the Nonlinear Analysis of Laminated Plates
,”
Comput. Struct.
,
22
(
4
), pp.
529
538
.
20.
Kim
,
W.
, and
Reddy
,
J. N.
,
2010
, “
A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams
,”
J. Solid Mech.
,
2
(
2
), pp.
101
114
.
21.
Kim
,
W.
, and
Reddy
,
J. N.
,
2010
, “
Novel Mixed Finite Element Models for Nonlinear Analysis of Plates
,”
Latin Am. J. Solids Struct.
,
7
(
2
), pp.
201
226
.
22.
Bellman
,
R.
, and
Casti
,
J.
,
1971
, “
Differential Quadrature and Long-Term Integration
,”
J. Math. Anal. Appl.
,
34
(
2
), pp.
235
238
.
23.
Fung
,
T. C.
,
1996
, “
Unconditionally Stable Higher-Order Accurate Hermitian Time Finite Elements
,”
Int. J. Numer. Methods Eng.
,
39
(
20
), pp.
3475
3495
.
24.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
,
Butterworth-Heinemann
,
Burlington, VT
.
25.
Schillinger
,
D.
,
Evans
,
J. A.
,
Frischmann
,
F.
,
Hiemstra
,
R. R.
,
Hsu
,
M.
, and
Hughes
,
T. J. R.
,
2015
, “
A Collocated C0 Finite Element Method: Reduced Quadrature Perspective, Cost Comparison With Standard Finite Elements, and Explicit Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
102
(
3–4
), pp.
576
631
.
26.
Reddy
,
J. N.
,
2015
,
An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics
,
2nd ed.
,
Oxford University Press
, Oxford, UK.
27.
Hughes
,
T. J. R.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
Publications, Mineola, NY.
28.
Cardona
,
A.
, and
Geradin
,
M.
,
1989
, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
,
33
(
3
), pp.
801
820
.
29.
Muhammad, M., Baig, I., and
Bathe
,
K. J.
,
2005
, “
On Direct Time Integration in Large Deformation Dynamic Analysis
,”
Third MIT Conference on Computational Fluid and Solid Mechanics
, Cambridge, MA, June 14–17, pp.
1044
1047
.
30.
Fung
,
T. C.
,
2002
, “
On the Equivalence of the Time Domain Differential Quadrature Method and the Dissipative Runge–Kutta Collocation Method
,”
Int. J. Numer. Methods Eng.
,
53
(
2
), pp.
409
431
.
31.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.
32.
Kim
,
W.
, and
Reddy
,
J. N.
,
2017
, “
Effective Higher-Order Time Integration Algorithms for the Analysis of Linear Structural Dynamics
,”
ASME J. Appl. Mech.
, epub.
You do not currently have access to this content.