The nonaxisymmetric transverse free vibrations of radially inhomogeneous circular Mindlin plates with variable thickness are governed by three coupled differential equations with variable coefficients, which are quite difficult to solve analytically in general. In this paper, we discover that if the geometrical and material properties of the plates vary in generalized power form along the radial direction, then the complicated governing differential equations can be reduced into three uncoupled second-order ordinary differential equations which are very easy to solve analytically. Most strikingly, for a class of solid circular Mindlin plates with absolutely sharp edge, the natural frequencies can be expressed explicitly in terms of elementary functions, with the corresponding mode shapes given in terms of Jacobi polynomials. These analytical expressions can serve as benchmark solutions for various numerical methods.

References

References
1.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
2nd ed.
,
McGraw-Hill Book Company
,
New York
.
2.
Leissa
,
A. W.
,
1969
, “
Vibration of Plates
,” NASA, Washington, DC, Report No.
NASA-SP-160
.
3.
Wang
,
J.
, and
Zhao
,
W. H.
,
2005
, “
The Determination of the Optimal Length of Crystal Blanks in Quartz Crystal Resonators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
11
), pp.
2023
2030
.
4.
Wang
,
R.
,
Han
,
Q.
, and
Pan
,
E.
,
2010
, “
An Analytical Solution for a Multilayered Magneto-Electro-Elastic Circular Plate Under Simply Supported Lateral Boundary Conditions
,”
Smart Mater. Struct.
,
19
(
6
), p.
065025
.
5.
Wen
,
P. H.
,
2012
, “
The Analytical Solutions of Incompressible Saturated Poroelastic Circular Mindlin's Plate
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051009
.
6.
Zhou
,
S. S.
, and
Gao
,
X. L.
,
2014
, “
A Nonclassical Model for Circular Mindlin Plates Based on a Modified Couple Stress Theory
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051014
.
7.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
745
752
.
8.
Whitney
,
J. M.
, and
Pagano
,
N. J.
,
1970
, “
Shear Deformation in Heterogeneous Anisotropic Plates
,”
ASME J. Appl. Mech.
,
37
(
4
), pp.
1031
1036
.
9.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
,
18
(1), pp.
31
38
.
10.
Lamb
,
H.
,
1917
, “
On Waves in an Elastic Plate
,”
Proc. R. Soc. London, Ser. A
,
93
(
648
), pp.
114
128
.
11.
Gupta
,
U. S.
,
Lal
,
R.
, and
Sharma
,
S.
,
2007
, “
Vibration of Non-Homogeneous Circular Mindlin Plates With Variable Thickness
,”
J. Sound Vib.
,
302
(
1–2
), pp.
1
17
.
12.
Pachenari
,
Z.
, and
Attarnejad
,
R.
,
2014
, “
Free Vibration of Tapered Mindlin Plates Using Basic Displacement Functions
,”
Arabian J. Sci. Eng.
,
39
(
6
), pp.
4433
4449
.
13.
Pentaras
,
D.
, and
Elishakoff
,
I.
,
2010
, “
Polar Orthotropic Inhomogeneous Circular Plates: Vibration Tailoring
,”
ASME J. Appl. Mech.
,
77
(
3
), p.
031019
.
14.
Elishakoff
,
I.
, and
Pentaras
,
D.
,
2009
, “
Design of Heterogeneous Clamped Circular Plates With Specified Fundamental Natural Frequency
,”
Int. J. Solids Struct.
,
46
(
10
), pp.
1997
2010
.
15.
Li
,
X. Y.
,
Ding
,
H. J.
,
Chen
,
W. Q.
, and
Li
,
P. D.
,
2013
, “
Three-Dimensional Piezoelectricity Solutions for Uniformly Loaded Circular Plates of Functionally Graded Piezoelectric Materials With Transverse Isotropy
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041007
.
16.
Li
,
S. R.
,
Wang
,
X.
, and
Batra
,
R. C.
,
2015
, “
Correspondence Relations Between Deflection, Buckling Load, and Frequencies of Thin Functionally Graded Material Plates and Those of Corresponding Homogeneous Plates
,”
ASME J. Appl. Mech.
,
82
(
11
), p.
111006
.
17.
Harris
,
G. Z.
,
1968
, “
The Normal Modes of a Circular Plate of Variable Thickness
,”
Q. J. Mech. Appl. Math.
,
21
(
3
), pp.
321
327
.
18.
Lenox
,
T. A.
, and
Conway
,
H. D.
,
1980
, “
An Exact, Closed Form, Solution for the Flexural Vibration of a Thin Annular Plate Having a Parabolic Thickness Variation
,”
J. Sound Vib.
,
68
(
2
), pp.
231
239
.
19.
Duan
,
W. H.
,
Quek
,
S. T.
, and
Wang
,
Q.
,
2005
, “
Generalized Hypergeometric Function Solutions for Transverse Vibration of a Class of Non-Uniform Annular Plates
,”
J. Sound Vib.
,
287
(
4–5
), pp.
785
807
.
20.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1954
, “
Thickness-Shear and Flexural Vibrations of a Circular Disk
,”
J. Appl. Phys.
,
25
(
10
), pp.
1329
1332
.
21.
Irie
,
T.
,
Yamada
,
G.
, and
Aomura
,
S.
,
1980
, “
Natural Frequencies of Mindlin Circular Plates
,”
ASME J. Appl. Mech.
,
47
(
3
), pp.
652
655
.
22.
Xiang
,
Y.
, and
Zhang
,
L.
,
2005
, “
Free Vibration Analysis of Stepped Circular Mindlin Plates
,”
J. Sound Vib.
,
280
(
3–5
), pp.
633
655
.
23.
Yuan
,
J. H.
, and
Chen
,
W. Q.
,
2017
, “
Exact Solutions for Axisymmetric Flexural Free Vibrations of Inhomogeneous Circular Mindlin Plates With Variable Thickness
,”
Appl. Math. Mech. Engl. Ed.
,
38
(
4
), pp.
505
526
.
24.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
2007
,
Table of Integrals, Series, and Products
,
7th ed.
,
Elsevier
,
Singapore
.
25.
Yuan
,
J. H.
,
Pao
,
Y. H.
, and
Chen
,
W. Q.
,
2016
, “
Exact Solutions for Free Vibrations of Axially Inhomogeneous Timoshenko Beams With Variable Cross Section
,”
Acta Mech.
,
227
(
9
), pp.
2625
2643
.
You do not currently have access to this content.