Geomaterials such as sedimentary rocks often contain fissures and cracks. Such secondary porosity will result in the so-called mesoscopic flow in wave propagation. Its presence is increasingly believed to be responsible for the significant wave energy loss in the seismic frequency band. In the present research, the double-porosity dual-permeability model is employed to describe such phenomena. Based on the model, we derive both the three-dimensional (3D) and two-dimensional (2D) dynamic Green's functions for the infinite space. The existence of reciprocity relation is demonstrated, which is used to deduce some interesting relations among Green's functions. These relations can serve as a consistency check on the obtained results. The Somigliana-type integral equations, the basis for the boundary element method (BEM), are also established. The complete list of Green's functions appearing in the integral equations is provided, which enables numerical implementation. Furthermore, the asymptotic behavior of the obtained solutions is discussed.

References

References
1.
Pride
,
S. R.
,
Berryman
,
J. G.
, and
Harris
,
J. M.
,
2004
, “
Seismic Attenuation Due to Wave-Induced Flow
,”
J. Geophys. Res.
,
109
(
B1
), p.
B01201
.
2.
Müller
,
T. M.
,
Gurevich
,
B.
, and
Lebedev
,
M.
,
2010
, “
Seismic Wave Attenuation and Dispersion Resulting From Wave-Induced Flow in Porous Rocks—A Review
,”
Geophysics
,
75
(
5
), pp.
75A147
75A164
.
3.
Pride
,
S. R.
, and
Berryman
,
J. G.
,
2003
, “
Linear Dynamics of Double-Porosity and Dual-Permeability Materials—I: Governing Equations and Acoustic Attenuation
,”
Phys. Rev. E
,
68
(
3
), p.
036603
.
4.
Pride
,
S. R.
, and
Berryman
,
J. G.
,
2003
, “
Linear Dynamics of Double-Porosity and Dual-Permeability Materials—II: Fluid Transport Equations
,”
Phys. Rev. E
,
68
(
3
), p.
036604
.
5.
Wilson
,
R. K.
, and
Aifantis
,
E. C.
,
1984
, “
A Double Porosity Model for Acoustic Wave Propagation in Fractured-Porous Rock
,”
Int. J. Eng. Sci.
,
22
(
8–10
), pp.
1209
1217
.
6.
Auriault
,
J. L.
, and
Boutin
,
C.
,
1994
, “
Deformable Porous Media With Double Porosity—III: Acoustics
,”
Transp. Porous Media
,
14
(
2
), pp.
143
162
.
7.
Tuncay
,
K.
, and
Corapcioglu
,
M. Y.
,
1996
, “
Wave Propagation in Fractured Porous Media
,”
Transp. Porous Media
,
23
(3), pp.
237
258
.
8.
Corapcioglu
,
M. Y.
, and
Tuncay
,
K.
,
1998
, “
Wave Propagation in Fractured Porous Media Saturated by Two Immiscible Fluids
,”
Poromechanics: A Tribute to Maurice A Biot
,
J. F.
Thimus
,
Y.
Abousleiman
,
A. H.-D.
Cheng
,
O.
Coussy
, and
E.
Detournay
, eds.,
Balkema
,
Rotterdam, The Netherlands
, pp.
197
203
.
9.
Olny
,
X.
, and
Boutin
,
C.
,
2003
, “
Acoustic Wave Propagation in Double Porosity Media
,”
J. Acoust. Soc. Am.
,
114
(
1
), pp.
73
89
.
10.
Berryman
,
J. G.
, and
Wang
,
H. F.
,
2000
, “
Elastic Wave Propagation and Attenuation in a Double-Porosity Dual-Permeability Medium
,”
Int. J. Rock Mech. Min. Sci.
,
37
(1–2), pp.
63
78
.
11.
Ba
,
J.
,
Carcione
,
J. M.
, and
Nie
,
J. X.
,
2011
, “
Biot-Rayleigh Theory of Wave Propagation in Double-Porosity Media
,”
J. Geophys. Res.
,
116
(
B6
), p.
B06202
.
12.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid—I: Low-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.
13.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid—II: Higher-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.
14.
Vgenopoulou
,
I.
, and
Beskos
,
D. E.
,
1992
, “
Dynamics of Saturated Rocks—IV: Column and Borehole Problems
,”
J. Eng. Mech.
,
118
(
9
), pp.
1795
1813
.
15.
Zheng
,
P.
, and
Cheng
,
A. H.-D.
,
2017
, “
One-Dimensional Analytical Solution for Mesoscopic Flow Induced Damping in a Double-Porosity Dual-Permeability Material
,”
Int. J. Numer. Anal. Methods Geomech.
, epub.
16.
Beskos
,
D. E.
,
Vgenopoulou
,
I.
, and
Providakis
,
C. P.
,
1989
, “
Dynamics of Saturated Rocks—II: Body Waves
,”
J. Eng. Mech.
,
115
(
5
), pp.
996
1016
.
17.
Beskos
,
D. E.
,
Papadakis
,
C. N.
, and
Woo
,
H. S.
,
1989
, “
Dynamics of Saturated Rocks—III: Rayleigh Waves
,”
J. Eng. Mech.
,
115
(
5
), pp.
1017
1034
.
18.
Dai
,
Z.-J.
,
Kuang
,
Z.-B.
, and
Zhao
,
S.-X.
,
2006
, “
Rayleigh Waves in a Double Porosity Half-Space
,”
J. Sound Vib.
,
298
(
1–2
), pp.
319
332
.
19.
Sharma
,
M. D.
,
2014
, “
Effect of Local Fluid Flow on Rayleigh Waves in a Double Porosity Solids
,”
Bull. Seismol. Soc. Am.
,
104
(
6
), pp.
2633
2643
.
20.
Zheng
,
P.
,
Ding
,
B.
, and
Sun
,
X.
,
2017
, “
Elastic Wave Attenuation and Dispersion Induced by Mesoscopic Flow in Double-Porosity Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
91
, pp.
104
111
.
21.
Dai
,
Z.-J.
,
Kuang
,
Z.-B.
, and
Zhao
,
S.-X.
,
2006
, “
Reflection and Transmission of Elastic Waves at the Interface Between an Elastic Solid and a Double Porosity Medium
,”
Int. J. Rock Mech. Min. Sci.
,
43
(
6
), pp.
961
971
.
22.
Dai
,
Z.-J.
, and
Kuang
,
Z.-B.
,
2008
, “
Reflection and Transmission of Elastic Waves at the Interface Between Water and a Double Porosity Solid
,”
Transp. Porous Media
,
72
(
3
), pp.
369
392
.
23.
Sharma
,
M. D.
,
2013
, “
Effect on Local Fluid Flow on Reflection of Plane Elastic Waves at the Boundary of a Double-Porosity Medium
,”
Adv. Water Resour.
,
61
, pp.
62
73
.
24.
Burridge
,
R.
, and
Vargas
,
C. A.
,
1979
, “
The Fundamental Solution in Dynamic Poroelasticity
,”
Geophys. J. R. Astron. Soc.
,
58
(
1
), pp.
61
90
.
25.
Norris
,
A. N.
,
1985
, “
Radiation From a Point Source and Scattering Theory in a Fluid-Saturated Porous Solid
,”
J. Acoust. Soc. Am.
,
77
(
6
), pp.
2012
2023
.
26.
Bonnet
,
G.
,
1987
, “
Basic Singular Solutions for a Poroelastic Medium in the Dynamic Range
,”
J. Acoust. Soc. Am.
,
82
(
5
), pp.
1758
1762
.
27.
Manolis
,
G. D.
, and
Beskos
,
D. E.
,
1989
, “
Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity
,”
Acta Mech.
,
76
(
1
), pp.
89
104
.
28.
Manolis
,
G. D.
, and
Beskos
,
D. E.
,
1990
, “
Errata in ‘Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity’
,”
Acta Mech.
,
83
(
3
), pp.
223
226
.
29.
Cheng
,
A. H.-D.
,
Badmus
,
T.
, and
Beskos
,
D. E.
,
1991
, “
Integral Equation for Dynamic Poroelasticity in Frequency Domain With BEM Solution
,”
J. Eng. Mech.
,
117
(
5
), pp.
1136
1157
.
30.
Kaynia
,
A. M.
, and
Banerjee
,
P. K.
,
1993
, “
Fundamental Solutions of Biot's Equations of Dynamic Poroelasticity
,”
Int. J. Eng. Sci.
,
31
(
5
), pp.
817
830
.
31.
Zimmerman
,
C.
, and
Stern
,
M.
,
1993
, “
Boundary Element Solution of 3-D Wave Scatter Problems in a Poroelastic Medium
,”
Eng. Anal. Boundary Elem.
,
12
(
4
), pp.
223
240
.
32.
Chen
,
J.
,
1994
, “
Time Domain Fundamental Solution to Biot's Complete Equations of Dynamic Poroelasticity—Part I: Two-Dimensional Solution
,”
Int. J. Solids Struct.
,
31
(
2
), pp.
1447
1490
.
33.
Chen
,
J.
,
1994
, “
Time Domain Fundamental Solution to Biot's Complete Equations of Dynamic Poroelasticity—Part II: Three-Dimensional Solution
,”
Int. J. Solids Struct.
,
31
(
2
), pp.
169
202
.
34.
Philippacopoulos
,
A. J.
,
1998
, “
Spectral Green's Dyadic for Point Sources in Poroelastic Media
,”
J. Eng. Mech.
,
124
(
1
), pp.
24
31
.
35.
Sahay
,
P. N.
,
2001
, “
Dynamic Green's Function for Homogeneous and Isotropic Porous Media
,”
Geophys. J. Int.
,
147
(
3
), pp.
622
629
.
36.
Schanz
,
M.
, and
Pryl
,
D.
,
2004
, “
Dynamic Fundamental Solutions for Compressible and Incompressible Modeled Poroelastic Continua
,”
Int. J. Solids Struct.
41
(
15
), pp.
4047
4073
.
37.
Lu
,
J.-F.
,
Jeng
,
D.-S.
, and
Williams
,
S.
,
2008
, “
A 2.5-D Dynamic Model for a Saturated Porous Medium—Part I: Green's Function
,”
Int. J. Solids Struct.
45
(
2
), pp.
378
391
.
38.
Karpfinger
,
F.
,
Müller
,
T. M.
, and
Gurevich
,
B.
,
2009
, “
Green's Functions and Radiation Patterns in a Poroelastic Solids Revisited
,”
Geophys. J. Int.
,
178
(
1
), pp.
327
337
.
39.
Ding
,
B.
,
Cheng
,
A. H.-D.
, and
Chen
,
Z.
,
2013
, “
Fundamental Solutions of Poroelastodynamics in Frequency Domain Based on Wave Decomposition
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061021
.
40.
Schanz
,
M.
,
2009
, “
Poroelastodynamics: Linear Models, Analytical Solutions, and Numerical Methods
,”
ASME Appl. Mech. Rev.
,
62
(
3
), p.
030803
.
41.
Cheng
,
A. H.-D.
,
2016
,
Poroelasticity
,
Springer International Publishing
,
Berlin
, pp.
530
544
.
42.
Zheng
,
P.
,
Gao
,
Z.
, and
Ding
,
B.
,
2016
, “
The Elastic Coefficients of Double-Porosity Materials: A Revisit
,”
Transp. Porous Med.
,
111
(
3
), pp.
555
571
.
(Erratum,
Transp. Porous Med.
, 2016; 112(3), pp. 783–784.)
43.
Kupradze
,
V. D.
,
1979
,
Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity
,
Amsterdam, The Netherlands
.
44.
Cheng
,
A. H.-D.
, and
Cheng
,
D. T.
,
2005
, “
Heritage and Early History of the Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
29
(
3
), pp.
268
302
.
45.
Predeleanu
,
M.
,
1968
, “
Reciprocal Theorem in the Consolidation Theory of Porous Media
,”
An. Univ. Bucuresti, Ser. Stiint. Nat., Mat., Mec.
,
17
(2), pp.
75
79
.
46.
Cleary
,
M. P.
,
1977
, “
Fundamental Solutions for a Fluid-Saturated Porous Solid
,”
Int. J. Solids Struct.
,
13
(
9
), pp.
785
806
.
47.
Cheng
,
A. H.-D.
, and
Predeleanu
,
M.
,
1987
, “
Transient Boundary Element Formulation for Linear Poroelasticity
,”
Appl. Math. Modell.
,
11
(
4
), pp.
285
290
.
48.
Cheng
,
A. H.-D.
, and
Detournay
,
E.
,
1998
, “
On Singular Integral Equations and Fundamental Solutions of Poroelasticity
,”
Int. J. Solids Struct.
,
35
(
34–35
), pp.
4521
4555
.
49.
Wheeler
,
L. T.
, and
Sternberg
,
E.
,
1968
, “
Some Theorems in Classical Elastodynamics
,”
Arch. Ration. Mech. Anal.
,
31
(
1
), pp.
51
90
.
50.
Mantic
,
V.
,
1993
, “
A New Formula for the C-Matrix in the Somigliana Identity
,”
J. Elasticity
,
33
(
3
), pp.
191
201
.
51.
Chapman
,
C.
,
2004
,
Fundamentals of Seismic Wave Propagation
,
Cambridge University Press
,
New York
, p.
115
.
52.
Pride
,
S. R.
, and
Haartsen
,
M. W.
,
1996
, “
Electroseismic Wave Properties
,”
J. Acoust. Soc. Am.
,
100
(
3
), pp.
1301
1315
.
53.
Gao
,
Y.
, and
Hu
,
H.
,
2010
, “
Seismoelectromagnetic Waves Radiated by a Double Couple Source in a Saturated Porous Medium
,”
Geophys. J. Int.
,
181
(
2
), pp.
873
896
.
54.
Wu
,
R.-S.
, and
Ben-Menahem
,
A.
,
1985
, “
The Elastodynamic Near Field
,”
Geophys. J. R. Astron. Soc.
,
81
(
3
), pp.
609
621
.
55.
Sternberg
,
E.
, and
Eubanks
,
R. A.
,
1955
, “
On the Concept of Concentrated Loads and an Extension of the Uniqueness Theorem in the Linear Theory of Elasticity
,”
J. Ration. Mech. Anal.
,
4
(1), pp.
135
168
.
56.
Wang
,
H. F.
,
2000
,
Theory of Linear Poroelasticity With Applications to Geomechanics and Hydrology
,
Princeton University Press
,
Princeton, NJ
, pp.
34
42
.
57.
Berryman
,
J. G.
, and
Wang
,
H. F.
,
1995
, “
The Elastic Coefficients of Double-Porosity Models for Fluid Transport in Jointed Rock
,”
J. Geophys. Res.
,
100
(
B12
), pp.
24611
24627
.
58.
Berryman
,
J. G.
, and
Pride
,
S. R.
,
2002
, “
Models for Computing Geomechanical Constants of Double-Porosity Materials From the Constituents' Properties
,”
J. Geophys. Res.
,
107
(
B3
), pp.
ECV2-1
ECV2-14
.
You do not currently have access to this content.