For both polyimide membranes in aerospace and graphene membranes in nanoelectronics with surface accuracy requirements, wrinkles due to the extreme out-of-plane flexibility yield inverse influences on the properties and applications of membranes. In this study, on the basis of discrete topology optimization, we propose a prenecking strategy by adopting elliptical free edges to suppress the stretch-induced wrinkling. This prenecking strategy with the computer-aided-design (CAD)-ready format is versatile to eliminate wrinkles in stretched membranes with clamped ends and achieve wrinkle-free performances. The wrinkle-free capability of the prenecking strategy, capable of satisfying the shape accuracy requirements, indicates that by suffering insignificant area loss, concerning of wrinkling problems in membranes is no further required. As compared with the existing researches focusing on studying wrinkling behaviors, the prenecking strategy offers a promising solution to the stretch-induced wrinkling problem by eliminating wrinkles through design optimization.

References

References
1.
Kim
,
T.-Y.
,
Puntel
,
E.
, and
Fried
,
E.
,
2012
, “
Numerical Study of the Wrinkling of a Stretched Thin Sheet
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
771
782
.
2.
Puntel
,
E.
,
Deseri
,
L.
, and
Fried
,
E.
,
2011
, “
Wrinkling of a Stretched Thin Sheet
,”
J. Elasticity
,
105
(
1–2
), pp.
137
170
.
3.
Attipou
,
K.
,
Hu
,
H.
,
Mohri
,
F.
,
Potier-Ferry
,
M.
, and
Belouettar
,
S.
,
2015
, “
Thermal Wrinkling of Thin Membranes Using a Fourier-Related Double Scale Approach
,”
Thin-Walled Struct.
,
94
, pp.
532
544
.
4.
Chiu
,
H. C.
,
Benson
,
R. C.
,
Fiscella
,
M. D.
, and
Burns
,
S. J.
,
1994
, “
Mechanical and Thermal Wrinkling of Polymer Membranes
,”
ASME J. Appl. Mech.
,
61
(
1
), pp.
67
70
.
5.
Lau
,
C. N.
,
Bao
,
W. Z.
, and
Velasco
,
J.
,
2012
, “
Properties of Suspended Graphene Membranes
,”
Mater. Today
,
15
(
6
), pp.
238
245
.
6.
Vandeparre
,
H.
,
Pineirua
,
M.
,
Brau
,
F.
,
Roman
,
B.
,
Bico
,
J.
,
Gay
,
C.
,
Bao
,
W.
,
Lau
,
C. N.
,
Reis
,
P. M.
, and
Damman
,
P.
,
2011
, “
Wrinkling Hierarchy in Constrained Thin Sheets From Suspended Graphene to Curtains
,”
Phys. Rev. Lett.
,
106
(
22
), p.
224301
.
7.
Zhu
,
W. J.
,
Low
,
T.
,
Perebeinos
,
V.
,
Bol
,
A. A.
,
Zhu
,
Y.
,
Yan
,
H. G.
,
Tersoff
,
J.
, and
Avouris
,
P.
,
2012
, “
Structure and Electronic Transport in Graphene Wrinkles
,”
Nano Lett.
,
12
(
7
), pp.
3431
3436
.
8.
Fasolino
,
A.
,
Los
,
J. H.
, and
Katsnelson
,
M. I.
,
2007
, “
Intrinsic Ripples in Graphene
,”
Nat. Mater.
,
6
(
11
), pp.
858
861
.
9.
Zhang
,
Z.
,
Duan
,
W. H.
, and
Wang
,
C. M.
,
2012
, “
Tunable Wrinkling Pattern in Annular Graphene Under Circular Shearing at Inner Edge
,”
Nanoscale
,
4
(
16
), pp.
5077
5081
.
10.
Duan
,
W. H.
,
Gong
,
K.
, and
Wang
,
Q.
,
2011
, “
Controlling the Formation of Wrinkles in a Single Layer Graphene Sheet Subjected to In-Plane Shear
,”
Carbon
,
49
(
9
), pp.
3107
3112
.
11.
Min
,
K.
, and
Aluru
,
N. R.
,
2011
, “
Mechanical Properties of Graphene Under Shear Deformation
,”
Appl. Phys. Lett.
,
98
(
1
), p.
013113
.
12.
Qin
,
Z.
,
Taylor
,
M.
,
Hwang
,
M.
,
Bertoldi
,
K.
, and
Buehler
,
M. J.
,
2014
, “
Effect of Wrinkles on the Surface Area of Graphene: Toward the Design of Nanoelectronics
,”
Nano Lett.
,
14
(
11
), pp.
6520
6525
.
13.
Neek-Amal
,
M.
, and
Peeters
,
F. M.
,
2010
, “
Graphene Nanoribbons Subjected to Axial Stress
,”
Phys. Rev. B
,
82
(
8
), p.
085432
.
14.
Wang
,
C. Y.
,
Mylvaganam
,
K.
, and
Zhang
,
L. C.
,
2009
, “
Wrinkling of Monolayer Graphene: A Study by Molecular Dynamics and Continuum Plate Theory
,”
Phys. Rev. B
,
80
(
15
), p.
155445
.
15.
Wang
,
Z.
, and
Devel
,
M.
,
2011
, “
Periodic Ripples in Suspended Graphene
,”
Phys. Rev. B
,
83
(
12
), p.
125422
.
16.
Wang
,
C.
,
Lan
,
L.
, and
Tan
,
H.
,
2013
, “
The Physics of Wrinkling in Graphene Membranes Under Local Tension
,”
Phys. Chem. Chem. Phys.
,
15
(
8
), pp.
2764
2773
.
17.
Wang
,
C. G.
,
Lan
,
L.
,
Liu
,
Y. P.
,
Tan
,
H. F.
, and
He
,
X. D.
,
2013
, “
Vibration Characteristics of Wrinkled Single-Layered Graphene Sheets
,”
Int. J. Solids Struct.
,
50
(
10
), pp.
1812
1823
.
18.
Meng
,
X.
,
Li
,
M.
,
Kang
,
Z.
,
Zhang
,
X.
, and
Xiao
,
J.
,
2013
, “
Mechanics of Self-Folding of Single-Layer Graphene
,”
J. Phys. D: Appl. Phys.
,
46
(
5
), p.
055308
.
19.
Shanshan
,
C.
,
Qiongyu
,
L.
,
Qimin
,
Z.
,
Yan
,
Q.
,
Hengxing
,
J.
,
Rodney
,
S. R.
, and
Weiwei
,
C.
,
2012
, “
Thermal Conductivity Measurements of Suspended Graphene With and Without Wrinkles by Micro-Raman Mapping
,”
Nanotechnology
,
23
(
36
), p.
365701
.
20.
Xu
,
K.
,
Cao
,
P. G.
, and
Heath
,
J. R.
,
2009
, “
Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers
,”
Nano Lett.
,
9
(
12
), pp.
4446
4451
.
21.
Ni
,
G.-X.
,
Zheng
,
Y.
,
Bae
,
S.
,
Kim
,
H. R.
,
Pachoud
,
A.
,
Kim
,
Y. S.
,
Tan
,
C.-L.
,
Im
,
D.
,
Ahn
,
J.-H.
,
Hong
,
B. H.
, and
Özyilmaz
,
B.
,
2012
, “
Quasi-Periodic Nanoripples in Graphene Grown by Chemical Vapor Deposition and Its Impact on Charge Transport
,”
ACS Nano
,
6
(
2
), pp.
1158
1164
.
22.
Akinwande
,
D.
,
Brennan
,
C. J.
,
Bunch
,
J. S.
,
Egberts
,
P.
,
Felts
,
J. R.
,
Gao
,
H.
,
Huang
,
R.
,
Kim
,
J.-S.
,
Li
,
T.
,
Li
,
Y.
,
Liechti
,
K. M.
,
Lu
,
N.
,
Park
,
H. S.
,
Reed
,
E. J.
,
Wang
,
P.
,
Yakobson
,
B. I.
,
Zhang
,
T.
,
Zhang
,
Y.-W.
,
Zhou
,
Y.
, and
Zhu
,
Y.
,
2017
, “
A Review on Mechanics and Mechanical Properties of 2D Materials—Graphene and Beyond
,”
Extreme Mech. Lett.
,
13
, pp.
42
77
.
23.
Wagner
,
H.
,
1929
, “
Flat Sheet Metal Girders With Very Thin Metal Web: Part I-General Theories and Assumptions
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No.
NACA-TM-604
.
24.
Danielson
,
D. A.
,
1978
, “
Tension Field Theories for Soft-Tissues
,”
Bull. Math. Biol.
,
40
(
2
), pp.
161
182
.
25.
Cerda
,
E.
,
Ravi-Chandar
,
K.
, and
Mahadevan
,
L.
,
2002
, “
Thin Films: Wrinkling of an Elastic Sheet Under Tension
,”
Nature
,
419
(
6907
), pp.
579
580
.
26.
Friedl
,
N.
,
Rammerstorfer
,
F. G.
, and
Fischer
,
F. D.
,
2000
, “
Buckling of Stretched Strips
,”
Comput. Struct.
,
78
(
1–3
), pp.
185
190
.
27.
Nayyar
,
V.
,
Ravi-Chandar
,
K.
, and
Huang
,
R.
,
2011
, “
Stretch-Induced Stress Patterns and Wrinkles in Hyperelastic Thin Sheets
,”
Int. J. Solids Struct.
,
48
(
25–26
), pp.
3471
3483
.
28.
Taylor
,
M.
,
Davidovitch
,
B.
,
Qiu
,
Z.
, and
Bertoldi
,
K.
,
2015
, “
A Comparative Analysis of Numerical Approaches to the Mechanics of Elastic Sheets
,”
J. Mech. Phys. Solids
,
79
, pp.
92
107
.
29.
Wang
,
C.
,
Liu
,
Y.
,
Lan
,
L.
, and
Tan
,
H.
,
2013
, “
Graphene Wrinkling: Formation, Evolution and Collapse
,”
Nanoscale
,
5
(
10
), pp.
4454
4461
.
30.
Zheng
,
L.
,
2009
, “
Wrinkling of Dielectric Elastomer Membranes
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA, p.
197
.
31.
Nayyar
,
V.
,
Ravi-Chandar
,
K.
, and
Huang
,
R.
,
2014
, “
Stretch-Induced Wrinkling of Polyethylene Thin Sheets: Experiments and Modeling
,”
Int. J. Solids Struct.
,
51
(
9
), pp.
1847
1858
.
32.
Zhang
,
Y.
, and
Liu
,
F.
,
2011
, “
Maximum Asymmetry in Strain Induced Mechanical Instability of Graphene: Compression Versus Tension
,”
Appl. Phys. Lett.
,
99
(
24
), p.
241908
.
33.
Bao
,
W.
,
Miao
,
F.
,
Chen
,
Z.
,
Zhang
,
H.
,
Jang
,
W.
,
Dames
,
C.
, and
Lau
,
C. N.
,
2009
, “
Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes
,”
Nat. Nanotechnol.
,
4
(
9
), pp.
562
566
.
34.
Deng
,
S. K.
, and
Berry
,
V.
,
2016
, “
Wrinkled, Rippled and Crumpled Graphene: An Overview of Formation Mechanism, Electronic Properties, and Applications
,”
Mater. Today
,
19
(
4
), pp.
197
212
.
35.
Liu
,
A.
,
Zhao
,
L.
,
Zhang
,
J.
,
Lin
,
L.
, and
Wu
,
H.
,
2016
, “
Solvent-Assisted Oxygen Incorporation of Vertically Aligned MoS2 Ultrathin Nanosheets Decorated on Reduced Graphene Oxide for Improved Electrocatalytic Hydrogen Evolution
,”
ACS Appl. Mater. Interfaces
,
8
(
38
), pp.
25210
25218
.
36.
Takei
,
A.
,
Brau
,
F.
,
Roman
,
B.
, and
Bico
,
J.
,
2011
, “
Stretch-Induced Wrinkles in Reinforced Membranes: From Out-of-Plane to In-Plane Structures
,”
Europhys. Lett.
,
96
(
6
), p.
64001
.
37.
Seong
,
M.
,
Lee
,
D.-G.
,
Mohanchandra
,
K. P.
, and
Carman
,
G. P.
,
2010
, “
Membrane Wrinkling Control Using in Situ Stiffness Changes Induced by Phase Transformation
,”
Smart Mater. Struct.
,
19
(
9
), p. 094005.
38.
Choi
,
J.-K.
,
Kwak
,
J.
,
Park
,
S.-D.
,
Yun
,
H. D.
,
Kim
,
S.-Y.
,
Jung
,
M.
,
Kim
,
S. Y.
,
Park
,
K.
,
Kang
,
S.
,
Kim
,
S.-D.
,
Park
,
D.-Y.
,
Lee
,
D.-S.
,
Hong
,
S.-K.
,
Shin
,
H.-J.
, and
Kwon
,
S.-Y.
,
2015
, “
Growth of Wrinkle-Free Graphene on Texture-Controlled Platinum Films and Thermal-Assisted Transfer of Large-Scale Patterned Graphene
,”
ACS Nano
,
9
(
1
), pp.
679
686
.
39.
Lanza
,
M.
,
Wang
,
Y.
,
Bayerl
,
A.
,
Gao
,
T.
,
Porti
,
M.
,
Nafria
,
M.
,
Liang
,
H.
,
Jing
,
G.
,
Liu
,
Z.
,
Zhang
,
Y.
,
Tong
,
Y.
, and
Duan
,
H.
,
2013
, “
Tuning Graphene Morphology by Substrate Towards Wrinkle-Free Devices: Experiment and Simulation
,”
J. Appl. Phys.
,
113
(
10
), p.
104301
.
40.
Mun
,
J.
,
Oh
,
J.
,
Bong
,
J.
,
Xu
,
H.
,
Loh
,
K.
, and
Cho
,
B.
,
2015
, “
Wrinkle-Free Graphene With Spatially Uniform Electrical Properties Grown on Hot-Pressed Copper
,”
Nano Res.
,
8
(
4
), pp.
1075
1080
.
41.
Park
,
B. J.
,
Choi
,
J. S.
,
Kim
,
H. S.
,
Kim
,
H. Y.
,
Jeong
,
J. R.
,
Choi
,
H. J.
,
Jung
,
H. J.
,
Jung
,
M. W.
,
An
,
K. S.
, and
Yoon
,
S. G.
,
2015
, “
Realization of Large-Area Wrinkle-Free Monolayer Graphene Films Transferred to Functional Substrates
,”
Sci. Rep.
,
5
(
1
), p.
9610
.
42.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
43.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
44.
Li
,
M.
,
Kang
,
Z.
,
Li
,
R.
,
Meng
,
X.
, and
Lu
,
Y.
,
2013
, “
A Molecular Dynamics Study on Tensile Strength and Failure Modes of Carbon Nanotube Junctions
,”
J. Phys. D: Appl. Phys.
,
46
(
49
), p.
495301
.
45.
Alexander
,
S.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO-the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
46.
Li
,
J. L.
, and
Yan
,
S. Z.
,
2014
, “
Thermally Induced Vibration of Composite Solar Array With Honeycomb Panels in Low Earth Orbit
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
419
432
.
47.
ABAQUS,
2009
, “
ABAQUS Analysis User's Manual V6.9
,” Dassault Systemes, Pawtucket, RI.
48.
Wong
,
Y. W.
, and
Pellegrino
,
S.
,
2006
, “
Wrinkled Membranes—Part III: Numerical Simulations
,”
J. Mech. Mater. Struct.
,
1
(
1
), pp.
63
95
.
49.
Tong
,
H. M.
,
Hsuen
,
H. K. D.
,
Saenger
,
K. L.
, and
Su
,
G. W.
,
1991
, “
Thickness-Direction Coefficient of Thermal-Expansion Measurement of Thin Polymer-Films
,”
Rev. Sci. Instrum.
,
62
(
2
), pp.
422
430
.
50.
Benford
,
D. J.
,
Powers
,
T. J.
, and
Moseley
,
S. H.
,
1999
, “
Thermal Conductivity of Kapton Tape
,”
Cryogenics
,
39
(
1
), pp.
93
95
.
51.
Jin-Wu
,
J.
,
Jian-Sheng
,
W.
, and
Baowen
,
L.
,
2009
, “
Young's Modulus of Graphene: A Molecular Dynamics Study
,”
Phys. Rev. B
,
80
(
11
), p.
113405
.
52.
Garcia-Sanchez
,
D.
,
van der Zande
,
A. M.
,
Paulo
,
A. S.
,
Lassagne
,
B.
,
McEuen
,
P. L.
, and
Bachtold
,
A.
,
2008
, “
Imaging Mechanical Vibrations in Suspended Graphene Sheets
,”
Nano Lett.
,
8
(
5
), pp.
1399
1403
.
53.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W. Z.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.
54.
Yoon
,
D.
,
Son
,
Y. W.
, and
Cheong
,
H.
,
2011
, “
Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy
,”
Nano Lett.
,
11
(
8
), pp.
3227
3231
.
55.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
56.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches A Comparative Review
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
57.
Kang
,
Z.
, and
Wang
,
Y. Q.
,
2011
, “
Structural Topology Optimization Based on Non-Local Shepard Interpolation of Density Field
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
49–52
), pp.
3515
3525
.
58.
Liu
,
X.
,
Jenkins
,
C. H.
, and
Schur
,
W. W.
,
2001
, “
Large Deflection Analysis of Pneumatic Envelopes Using a Penalty Parameter Modified Material Model
,”
Finite Elem. Anal. Des.
,
37
(
3
), pp.
233
251
.
59.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
60.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm—Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1
), pp.
309
336
.
61.
Sigmund
,
O.
, and
Bendsoe
,
M. P.
,
2004
,
Topology Optimization: Theory, Methods, and Applications
,
Springer-Verlag
,
Berlin
.
62.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
63.
Shenoy
,
V. B.
,
Reddy
,
C. D.
,
Ramasubramaniam
,
A.
, and
Zhang
,
Y. W.
,
2008
, “
Edge-Stress-Induced Warping of Graphene Sheets and Nanoribbons
,”
Phys. Rev. Lett.
,
101
(
24
), p. 245501.
64.
Fan
,
L. J.
, and
Xiang
,
Z. H.
,
2015
, “
Suppressing the Thermally Induced Vibration of Large-Scale Space Structures Via Structural Optimization
,”
J. Therm. Stresses
,
38
(
1
), pp.
1
21
.
You do not currently have access to this content.