In this work, we carried out bulge test for quantifying the viscoelastic properties of poly (vinyl alcohol) (PVA) thin films with custom-developed apparatus. A viscoelastic bulge deformation (VBD) model based on the elasticity–viscoelasticity correspondence principle and spherical cap equation is established to describe the bulge deformation of polymeric thin films. The VBD model can be used to determine the time-dependent modulus by bulge test for polymeric films. Uniaxial compressive relaxation test and PRONY series fitting method are used to define the constitutive parameters of the VBD equations. We presented two types of VBD models in frequency domain under linear loading and step loading conditions. Through inverse Laplace transformation, the proposed VBD model can effectively predict the bulge deformation of PVA hydrogel thin film. Numerical simulations are also conducted to validate the VBD model under step loading conditions. This work provides a methodology to characterize the viscoelastic properties of polymeric films by bulge test.

References

References
1.
Applegate
,
M. B.
,
Perotto
,
G.
,
Kaplan
,
D. L.
, and
Omenetto
,
F. G.
,
2015
, “
Biocompatible Silk Step-Index Optical Waveguides
,”
Biomed. Opt. Express
,
6
(
11
), pp.
4221
4227
.
2.
Choi
,
M.
,
Humar
,
M.
,
Kim
,
S.
, and
Yun
,
S. H.
,
2015
, “
Step‐Index Optical Fiber Made of Biocompatible Hydrogels
,”
Adv. Mater.
,
27
(
27
), pp.
4081
4086
.
3.
Hou
,
Z.
,
Sun
,
S.
,
Zheng
,
B.
,
Yang
,
R.
, and
Li
,
A.
,
2015
, “
Stimuli-Responsive Protein-Based Micro/Nano-Waveguides
,”
RSC Adv.
,
5
(
95
), pp.
77847
77850
.
4.
Colinart
,
T.
,
Perrin
,
J. C.
, and
Moyne
,
C.
,
2014
, “
Application of a Micro/Macro‐Homogenization Procedure to the Investigation of the Mechanical Behavior of Ionomer Membranes for Fuel Cells
,”
J. Polym. Sci. Part B: Polym. Phys.
,
52
(
22
), pp.
1496
1509
.
5.
Jiang
,
S.
,
Liu
,
S.
, and
Feng
,
W.
,
2011
, “
PVA Hydrogel Properties for Biomedical Application
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1228
1233
.
6.
Brahim
,
S.
,
Narinesingh
,
D.
, and
Guiseppi-Elie
,
A.
,
2003
, “
Release Characteristics of Novel pH-Sensitive p (HEMA-DMAEMA) Hydrogels Containing 3-(Trimethoxy-Silyl) Propyl Methacrylate
,”
Biomacromolecules
,
4
(
5
), pp.
1224
1231
.
7.
Grodzinsky
,
A.
, and
Grimshaw
,
P.
,
1990
, “
Electrically and Chemically Controlled Hydrogels for Drug Delivery
,”
Pulse and Self-Regulated Drug Delivery
,
CRC Press
,
Boca Raton, FL
, pp.
47
64
.
8.
Geise
,
G. M.
,
Lee
,
H. S.
,
Miller
,
D. J.
,
Freeman
,
B. D.
,
McGrath
,
J. E.
, and
Paul
,
D. R.
,
2010
, “
Water Purification by Membranes: The Role of Polymer Science
,”
J. Polym. Sci. Part B: Polym. Phys.
,
48
(
15
), pp.
1685
1718
.
9.
Shannon
,
M. A.
,
Bohn
,
P. W.
,
Elimelech
,
M.
,
Georgiadis
,
J. G.
,
Marinas
,
B. J.
, and
Mayes
,
A. M.
,
2008
, “
Science and Technology for Water Purification in the Coming Decades
,”
Nature
,
452
(
7185
), pp.
301
310
.
10.
Hu
,
Y.
,
Chan
,
E. P.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Poroelastic Relaxation Indentation of Thin Layers of Gels
,”
J. Appl. Phys.
,
110
(
8
), p.
086103
.
11.
Chan
,
E. P.
,
Lin
,
Q.
, and
Stafford
,
C. M.
,
2012
, “
Quantifying the Elasticity and Viscosity of Geometrically Confined Polymer Films Via Thermal Wrinkling
,”
J. Polym. Sci. Part B: Polym. Phys.
,
50
(
22
), pp.
1556
1561
.
12.
Lu
,
T. Q.
,
Wang
,
J.
,
Yang
,
R.
, and
Wang
,
T. J.
,
2017
, “
A Constitutive Model for Soft Materials Incorporating Viscoelasticity and Mullins Effect
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021010
.
13.
Tang
,
J.
,
Chen
,
X.
,
Pei
,
Y.
, and
Fang
,
D.
,
2016
, “
Pseudoelasticity and Nonideal Mullins Effect of Nanocomposite Hydrogels
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111010
.
14.
Zhao
,
W.
,
Liu
,
C.
,
Wu
,
F.
, and
Lenardi
,
C.
,
2014
, “
Investigation on the Mechanical Behavior of Poly (2‐Hydroxyethyl Methacrylate) Hydrogel Membrane Under Compression in the Assembly Process of Microfluidic System
,”
J. Polym. Sci. Part B: Polym. Phys.
,
52
(
7
), pp.
485
495
.
15.
Xin
,
H.
,
Brown
,
H. R.
,
Naficy
,
S.
, and
Spinks
,
G. M.
,
2016
, “
Mechanical Recoverability and Damage Process of Ionic‐Covalent PAAm‐Alginate Hybrid Hydrogels
,”
J. Polym. Sci. Part B: Polym. Phys.
,
54
(
1
), pp.
53
63
.
16.
Oyen
,
M.
,
2014
, “
Mechanical Characterisation of Hydrogel Materials
,”
Int. Mater. Rev.
,
59
(
1
), pp.
44
59
.
17.
Drozdov
,
A. D.
, and
Christiansen
,
J. D.
,
2013
, “
Stress–Strain Relations for Hydrogels Under Multiaxial Deformation
,”
Int. J. Solids Struct.
,
50
(
22–23
), pp.
3570
3585
.
18.
Koskinen
,
J.
,
Steinwall
,
J. E.
,
Soave
,
R.
, and
Johnson
,
H. H.
,
1993
, “
Microtensile Testing of Free-Standing Polysilicon Fibers of Various Grain Sizes
,”
J. Micromech. Microeng.
,
3
(
1
), pp.
13
17
.
19.
Pearson
,
I.
, and
Pickering
,
M.
,
2001
, “
The Determination of a Highly Elastic Adhesive's Material Properties and Their Representation in Finite Element Analysis
,”
Finite Elem. Anal. Des.
,
37
(
3
), pp.
221
232
.
20.
Miller
,
K.
,
2004
, “
Testing Elastomers for Hyperelastic Material Models in Finite Element Analysis
,”
Axel Products, Inc.
, Ann Arbor, MI.
21.
Chan
,
E. P.
,
Hu
,
Y.
,
Johnson
,
P. M.
,
Suo
,
Z.
, and
Stafford
,
C. M.
,
2012
, “
Spherical Indentation Testing of Poroelastic Relaxations in Thin Hydrogel Layers
,”
Soft Matter
,
8
(
5
), pp.
1492
1498
.
22.
Huang
,
C.
,
Lou
,
W.
,
Tsai
,
C.
,
Wu
,
T.-C.
, and
Lin
,
H.-Y.
,
2007
, “
Mechanical Properties of Polymer Thin Film Measured by the Bulge Test
,”
Thin Solid Films
,
515
(
18
), pp.
7222
7226
.
23.
Tonge
,
T. K.
,
Atlan
,
L. S.
,
Voo
,
L. M.
, and
Nguyen
,
T. D.
,
2013
, “
Full-Field Bulge Test for Planar Anisotropic Tissues: Part I—Experimental Methods Applied to Human Skin Tissue
,”
Acta Biomater.
,
9
(
4
), pp.
5913
5925
.
24.
Tonge
,
T. K.
,
Voo
,
L. M.
, and
Nguyen
,
T. D.
,
2013
, “
Full-Field Bulge Test for Planar Anisotropic Tissues—Part II: A Thin Shell Method for Determining Material Parameters and Comparison of Two Distributed Fiber Modeling Approaches
,”
Acta Biomater.
,
9
(
4
), pp.
5926
5942
.
25.
Zhou
,
W.
,
Yang
,
J.
,
Li
,
Y.
,
Ji
,
A.
,
Yang
,
F.
, and
Yu
,
Y.
,
2009
, “
Bulge Testing and Fracture Properties of Plasma-Enhanced Chemical Vapor Deposited Silicon Nitride Thin Films
,”
Thin Solid Films
,
517
(
6
), pp.
1989
1994
.
26.
Beams
,
J.
,
1959
, “
Mechanical Properties of Thin Films of Gold and Silver
,”
Structure and Properties of Thin Films
,
Wiley
,
New York
, pp.
183
192
.
27.
Lu
,
T. Q.
,
Chen
,
C.
,
Zhao
,
K.
,
Zhang
,
W.
, and
Wang
,
T. J.
,
2013
, “
Bulge Test at Nano-Scale: The Surface Effects
,”
Appl. Phys. Lett.
,
103
(
5
), p.
053110
.
28.
Small
,
M. K.
, and
Nix
,
W.
,
1992
, “
Analysis of the Accuracy of the Bulge Test in Determining the Mechanical Properties of Thin Films
,”
J. Mater. Res.
,
7
(
6
), pp.
1553
1563
.
29.
Vlassak
,
J.
, and
Nix
,
W.
,
1992
, “
A New Bulge Test Technique for the Determination of Young's Modulus and Poisson's Ratio of Thin Films
,”
J. Mater. Res.
,
7
(
12
), pp.
3242
3249
.
30.
Liu
,
Q.
,
Zhou
,
W.
,
Ding
,
J.
,
Xiao
,
M.
,
Yu
,
Z.
,
Xu
,
H.
,
Mao
,
W.
,
Pei
,
Y.
,
Li
,
F.
, and
Feng
,
X.
,
2017
, “
Study of Mechanical-Magnetic and Electromagnetic Properties of PZT/Ni Film Systems by a Novel Bulge Technique
,”
J. Magn. Magn. Mater.
,
423
, pp.
90
97
.
31.
Zhang
,
J.-J.
,
Sun
,
Y.-Y.
,
Li
,
D.-S.
,
Cao
,
Y.
,
Wang
,
Z.
,
Ma
,
J.
, and
Zhao
,
G.-Z.
,
2015
, “
Modeling the Mechanics of Graphene-Based Polymer Composite Film Measured by the Bulge Test
,”
J. Phys. D: Appl. Phys.
,
48
(
42
), p.
425302
.
32.
Drexler
,
E.
,
Quinn
,
T.
,
Slifka
,
A.
,
McCowan
,
C.
,
Bischoff
,
J.
,
Wright
,
J.
,
Ivy
,
D.
, and
Shandas
,
R.
,
2007
, “
Comparison of Mechanical Behavior Among the Extrapulmonary Arteries From Rats
,”
J. Biomech.
,
40
(
4
), pp.
812
819
.
33.
Tang
,
J.
,
Yu
,
Z.
,
Sun
,
Y.
,
Pei
,
Y.
, and
Fang
,
D.
,
2013
, “
A Bulge-Induced Dehydration Failure Mode of Nanocomposite Hydrogel
,”
Appl. Phys. Lett.
,
103
(
16
), p.
161903
.
34.
Stammen
,
J. A.
,
Williams
,
S.
,
Ku
,
D. N.
, and
Guldberg
,
R. E.
,
2001
, “
Mechanical Properties of a Novel PVA Hydrogel in Shear and Unconfined Compression
,”
Biomaterials
,
22
(
8
), pp.
799
806
.
35.
Vrana
,
N. E.
,
Liu
,
Y.
,
McGuinness
,
G. B.
, and
Cahill
,
P. A.
,
2008
, “
Characterization of Poly (Vinyl Alcohol)/Chitosan Hydrogels as Vascular Tissue Engineering Scaffolds
,”
Macromol. Symp.
,
269
(1), pp.
106
110
.
36.
Yu
,
Z.
,
Mao
,
W.
,
Li
,
F.
,
Feng
,
X.
,
Pei
,
Y.
, and
Fang
,
D.
,
2014
, “
Magnetic and Electric Bulge-Test Instrument for the Determination of Coupling Mechanical Properties of Functional Free-Standing Films and Flexible Electronics
,”
Rev. Sci. Instrum.
,
85
(
6
), p.
065117
.
37.
De
,
S. K.
,
Aluru
,
N.
,
Johnson
,
B.
,
Crone
,
W.
,
Beebe
,
D. J.
, and
Moore
,
J.
,
2002
, “
Equilibrium Swelling and Kinetics of pH-Responsive Hydrogels: Models, Experiments, and Simulations
,”
J. Microelectromech. Syst.
,
11
(
5
), pp.
544
555
.
38.
Ramanujan
,
R.
, and
Lao
,
L.
,
2006
, “
The Mechanical Behavior of Smart Magnet–Hydrogel Composites
,”
Smart Mater. Struct.
,
15
(
4
), pp.
952
956
.
39.
Luprano
,
V. M.
,
Ramires
,
P.
,
Montagna
,
G.
, and
Milella
,
E.
,
1997
, “
Non-Destructive Characterization of Hydrogels
,”
J. Mater. Sci.: Mater. Med.
,
8
(
3
), pp.
175
178
.
You do not currently have access to this content.