The anisotropic poroelastic constitutive model is reexamined in this article. The assumptions and conclusions of previous works, i.e., Thompson and Willis and Cheng, are compared and clarified. The micromechanics of poroelasticity is discussed by dividing the medium into connected fluid part and solid skeleton part. The latter includes, in turn, solid part and, possibly, disconnected fluid part, i.e., fluid islands; therefore, the solid skeleton part is inhomogeneous. The constitutive model is complicated both in the whole medium and in the solid skeleton because of their inhomogeneity, but the formulations are simplified successfully by introducing a new material constant which is defined differently by Cheng and by Thompson and Willis. All the unmeasurable micromechanical material constants are lumped together in this constant. Four levels of assumptions used in poroelasticity are demonstrated, and with the least assumptions, the constitutive model is formulated. The number of independent material constants is discussed, and the procedures in laboratory tests to obtain the constants are suggested.

References

1.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
2.
Biot
,
M. A.
, and
Willis
,
D. G.
,
1957
, “
The Elastic Coefficients of the Theory of Consolidation
,”
ASME J. Appl. Mech.
,
24
, pp.
594
601
.
3.
Rice
,
J. R.
, and
Cleary
,
M. P.
,
1976
, “
Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys.
,
14
(
2
), pp.
227
241
.
4.
Detournay
,
E.
, and
Cheng
,
A. H.-D.
,
1993
, “
Fundamentals of Poroelasticity
,”
Comprehensive Rock Engineering: Principles, Practice and Projects
(Analysis and Design Method, Vol.
2
),
Pergamon Press
,
Oxford, UK
, pp.
113
171
.
5.
Cheng
,
A. H.-D.
,
2016
,
Poroelasticity
(Theory and Applications of Transport in Porous Media, Vol.
27
),
Springer International Publishing
,
Cham, Switzerland
.
6.
Kovalyshen
,
Y.
,
2010
, “
Fluid-Driven Fracture in Poroelastic Medium
,”
Ph.D. thesis
, University of Minnesota, Ann Arbor, MI.
7.
Miehe
,
C.
,
Mauthe
,
S.
, and
Teichtmeister
,
S.
,
2015
, “
Minimization Principles for the Coupled Problem of Darcy-Biot-Type Fluid Transport in Porous Media Linked to Phase Field Modeling of Fracture
,”
J. Mech. Phys. Solids
,
82
, pp.
186
217
.
8.
Detournay
,
E.
, and
Cheng
,
A. H.-D.
,
1988
, “
Poroelastic Response of a Borehole in a Non-Hydrostatic Stress Field
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
25
(
3
), pp.
171
182
.
9.
Gao
,
Y.
,
Liu
,
Z.
,
Zhuang
,
Z.
,
Hwang
,
K.-C.
,
Wang
,
Y.
,
Yang
,
L.
, and
Yang
,
H.
,
2016
, “
Cylindrical Borehole Failure in a Poroelastic Medium
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061005
.
10.
Biot
,
M. A.
,
1955
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. Appl. Phys.
,
26
(
2
), pp.
182
–185.
11.
Biot
,
M. A.
,
1972
, “
Theory of Finite Deformations of Porous Solids
,”
Indiana Univ. Math. J.
,
21
(
7
), pp.
597
620
.
12.
Biot
,
M. A.
,
1973
, “
Nonlinear and Semilinear Rheology of Porous Solids
,”
J. Geophys. Res.
,
78
(
23
), pp.
4924
4937
.
13.
Thompson
,
M.
, and
Willis
,
J. R.
,
1991
, “
A Reformation of the Equations of Anisotropic Poroelasticity
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
612
616
.
14.
Cheng
,
A. H.-D.
,
1997
, “
Material Coefficients of Anisotropic Poroelasticity
,”
Int. J. Rock Mech. Min. Sci.
,
34
(
2
), pp.
199
205
.
15.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
16.
Nur
,
A.
, and
Byerlee
,
J. D.
,
1971
, “
An Exact Effective Stress Law for Elastic Deformation of Rock With Fluids
,”
J. Geophys. Res.
,
76
(
26
), pp.
6414
6419
.
17.
Carroll
,
M. M.
,
1979
, “
An Effective Stress Law for Anisotropic Elastic Deformation
,”
J. Geophys. Res.: Solid Earth
,
84
(
B13
), pp.
7510
7512
.
18.
Carroll
,
M. M.
, and
Katsube
,
N.
,
1983
, “
The Role of Terzaghi Effective Stress in Linearly Elastic Deformation
,”
ASME J. Energy Resour. Technol.
,
105
(
4
), pp.
509
511
.
19.
Mesri
,
G.
,
Adachi
,
G.
, and
Ullrich
,
C. R.
,
1976
, “
Pore-Pressure Response in Rock to Undrained Change in All-Round Stress
,”
Géotechnique
,
26
(
2
), pp.
317
330
.
20.
Fjaer
,
E.
,
Holt
,
R.
,
Raaen
,
A.
,
Risnes
,
R.
, and
Horsrud
,
P.
,
2008
,
Petroleum Related Rock Mechanics
, 2nd ed.,
Elsevier
,
Amsterdam, The Netherlands
.
You do not currently have access to this content.