The conventional contact mechanics does not account for surface tension; however, it is important for micro- or nanosized contacts. In the present paper, the influences of surface tension on the indentations of an elastic half-space by a rigid sphere, cone, and flat-ended cylinder are investigated, and the corresponding singular integral equations are formulated. Due to the complicated structure of the integral kernel, it is difficult to obtain their analytical solutions. By using the Gauss–Chebyshev quadrature formula, the integral equations are solved numerically first. Then, for each indenter, the analytical solutions of two limit cases considering only the bulk elasticity or surface tension are presented. It is interesting to find that, through a simple combination of the solutions of two limit cases and fitting the direct numerical results, the dependence of load on contact radius or indent depth for general case can be given explicitly. The results incorporate the contribution of surface tension in contact mechanics and are helpful to understand contact phenomena at micro- and nanoscale.

References

References
1.
Hertz
,
H.
,
1882
, “
On the Contact Between Elastic Bodies
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
2.
Sneddon
,
I. N.
,
1965
, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
,
3
(
1
), pp.
47
57
.
3.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
(
1558
), pp.
301
313
.
4.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
325
.
5.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
(
1
), pp.
243
269
.
6.
Muller
,
V. M.
,
Yushchenko
,
V. S.
, and
Derjaguin
,
B. V.
,
1980
, “
On the Influence of Molecular Forces on the Deformation of an Elastic Sphere and Its Sticking to a Rigid Plane
,”
J. Colloid Interface Sci.
,
77
(
1
), pp.
91
101
.
7.
Greenwood
,
G. A.
,
1997
, “
Adhesion of Elastic Spheres
,”
Proc. R. Soc. London, Ser. A
,
453
(
1961
), pp.
1277
1297
.
8.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
9.
Stelmashenko
,
N. A.
,
Walls
,
M. G.
,
Brown
,
L. M.
, and
Milman
,
Y. V.
,
1993
, “
Microindentations on W and Mo Oriented Single Crystals: An STM Study
,”
Acta Metall. Mater.
,
41
(
10
), pp.
2855
2865
.
10.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
,
10
(
4
), pp.
853
863
.
11.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
12.
Begley
,
M. R.
, and
Hutchinson
,
J. W.
,
1998
, “
The Mechanics of Size Dependent Indentation
,”
J. Mech. Phys. Solids
,
46
(
10
), pp.
2049
2068
.
13.
Huang
,
Y. G.
,
Zhang
,
F.
, and
Hwang
,
K. C.
,
2006
, “
A Model of Size Effects in Nano-Indentation
,”
J. Mech. Phys. Solids
,
54
(
8
), pp.
1668
1686
.
14.
Tymiak
,
N. I.
,
Kramer
,
D. E.
,
Bahr
,
D. F.
, and
Gerberich
,
W. W.
,
2001
, “
Plastic Strain and Strain Gradients at Very Small Indentation Depths
,”
Acta Mater.
,
49
(
6
), pp.
1021
1034
.
15.
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
,
1999
, “
Atomistic Finite Deformation Simulations: A Discussion on Length Scale Effects in Relation to Mechanical Stresses
,”
J. Eng. Mater. Technol.
,
121
(
2
), pp.
114
119
.
16.
Gerberich
,
W. W.
,
Tymiak
,
N. I.
,
Grunlan
,
J. C.
,
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
,
2002
, “
Interpretations of Indentation Size Effects
,”
ASME J. Appl. Mech.
,
69
(
4
), pp.
433
442
.
17.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
18.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larche
,
F.
,
1998
, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
,
78
(
5
), pp.
1093
1109
.
19.
Huang
,
Z. P.
, and
Wang
,
J.
,
2006
, “
A Theory of Hyperelasticity of Multi-Phase Media With Surface/Interface Energy Effect
,”
Acta Mech.
,
182
(
1
), pp.
195
210
.
20.
Huang
,
Z. P.
, and
Sun
,
L.
,
2007
, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis
,”
Acta Mech.
,
190
(
1
), pp.
151
163
.
21.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
.
22.
Sapsathiarn
,
Y.
, and
Rajapakse
,
R. K. N. D.
,
2012
, “
A Model for Large Deflections of Nanobeams and Experimental Comparison
,”
IEEE Trans. Nanotechnol.
,
11
(
2
), pp.
247
254
.
23.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1574
1596
.
24.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
La Grotta
,
A.
, and
Stolarski
,
H. K.
,
2010
, “
The Effects of Surface Elasticity and Surface Tension on the Overall Elastic Behavior of Unidirectional Nano-Composites
,”
Comput. Sci. Technol.
,
70
(
3
), pp.
427
434
.
25.
Dingreville
,
R.
,
Qu
,
J. M.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1827
1854
.
26.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2009
, “
Timoshenko Beam Model for Buckling and Vibration of Nanowires With Surface Effects
,”
J. Phys. D: Appl. Phys.
,
42
(
15
), p.
155411
.
27.
Olsson
,
P. A. T.
, and
Park
,
H. S.
,
2012
, “
On the Importance of Surface Elastic Contributions to the Flexural Rigidity of Nanowires
,”
J. Mech. Phys. Solids
,
60
(
12
), pp.
2064
2083
.
28.
Hajji
,
M. A.
,
1978
, “
Indentation of a Membrane on an Elastic Half Space
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
320
324
.
29.
He
,
L. H.
, and
Lim
,
C. W.
,
2006
, “
Surface Green Function for a Soft Elastic Half-Space: Influence of Surface Stress
,”
Int. J. Solids Struct.
,
43
(
1
), pp.
132
143
.
30.
Huang
,
G. Y.
, and
Yu
,
S. W.
,
2007
, “
Effect of Surface Elasticity on the Interaction Between Steps
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
821
823
.
31.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Stresses on Contact Problems at Nanoscale
,”
J. Appl. Phys.
,
101
(
1
), p.
013510
.
32.
Koguchi
,
H.
,
2008
, “
Surface Green Function With Surface Stresses and Surface Elasticity Using Stroh's Formalism
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061014
.
33.
Chen
,
W. Q.
, and
Zhang
,
C.
,
2010
, “
Anti-Plane Shear Green's Functions for an Isotropic Elastic Half-Space With a Material Surface
,”
Int. J. Solids Struct.
,
47
(
11–12
), pp.
1641
1650
.
34.
Gao
,
X.
,
Hao
,
F.
,
Fang
,
D. N.
, and
Huang
,
Z. P.
,
2013
, “
Boussinesq Problem With the Surface Effect and Its Application to Contact Mechanics at the Nanoscale
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2620
2630
.
35.
Long
,
J. M.
,
Wang
,
G. F.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
,
2012
, “
Two-Dimensional Hertzian Contact Problem With Surface Tension
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1588
1594
.
36.
Long
,
J. M.
, and
Wang
,
G. F.
,
2013
, “
Effects of Surface Tension on Axisymmetric Hertzian Contact Problem
,”
Mech. Mater.
,
56
(
1
), pp.
65
70
.
37.
Wang
,
G. F.
, and
Niu
,
X. R.
,
2015
, “
Nanoindentation of Soft Solids by a Flat Punch
,”
Acta Mech. Sin.
,
31
(
4
), pp.
531
535
.
38.
Rimai
,
D.
,
Quesnel
,
D.
, and
Busnaina
,
A.
,
2000
, “
The Adhesion of Dry Particles in the Nanometer to Micrometer-Size Range
,”
Colloids Surf., A
,
165
(
1–3
), pp.
3
10
.
39.
Chakrabarti
,
A.
, and
Chaudhury
,
M. K.
,
2013
, “
Direct Measurement of the Surface Tension of a Soft Elastic Hydrogel: Exploration of Elastocapillary Instability in Adhesion
,”
Langmuir
,
29
(
23
), pp.
6926
6935
.
40.
Style
,
R. W.
,
Hyland
,
C.
,
Boltyanskiy
,
R.
,
Wettlaufer
,
J. S.
, and
Dufresne
,
E. R.
,
2013
, “
Surface Tension and Contact With Soft Elastic Solids
,”
Nat. Commun.
,
4
(
4
),
p
. 2728.
41.
Xu
,
X. J.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2014
, “
Effects of Surface Tension on the Adhesive Contact of a Rigid Sphere to a Compliant Substrate
,”
Soft Matter
,
10
(
26
), pp.
4625
4632
.
42.
Hui
,
C. Y.
,
Liu
,
T. S.
,
Salez
,
T.
,
Raphael
,
E.
, and
Jagota
,
A.
,
2015
, “
Indentation of a Rigid Sphere Into an Elastic Substrate With Surface Tension and Adhesion
,”
Proc. R. Soc. A
,
471
(
2175
), p.
20140727
.
43.
Long
,
J. M.
,
Wang
,
G. F.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
,
2016
, “
Effects of Surface Tension on the Adhesive Contact Between a Hard Sphere and a Soft Substrate
,”
Int. J. Solids Struct.
,
84
, pp.
133
138
.
44.
Chen
,
T. Y.
,
Chiu
,
M. S.
, and
Weng
,
C. N.
,
2006
, “
Derivation of the Generalized Young–Laplace Equation of Curved Interfaces in Nanoscaled Solids
,”
J. Appl. Phys.
,
100
(
7
), p.
074308
.
45.
Ru
,
C. Q.
,
2010
, “
Simple Geometrical Explanation of Gurtin–Murdoch Model of Surface Elasticity With Clarification of Its Related Versions
,”
Sci. China Phys. Mech.
,
53
(
3
), pp.
536
544
.
46.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), p.
094104
.
47.
Erdogan
,
F.
, and
Gupta
,
G. D.
,
1972
, “
On the Numerical Solution of Singular Integral Equations
,”
Q. Appl. Math.
,
29
(
4
), pp.
525
534
.
48.
Shenoy
,
V.
, and
Sharma
,
A.
,
2001
, “
Pattern Formation in a Thin Solid Film With Interactions
,”
Phys. Rev. Lett.
,
86
(
1
), pp.
119
122
.
49.
Corless
,
R. M.
,
Gonnet
,
G. H.
,
Hare
,
D. E. G.
,
Jeffrey
,
D. J.
, and
Knuth
,
D. E.
,
1996
, “
On the Lambert W Function
,”
Adv. Comput. Math.
,
5
(
1
), pp.
329
359
.
50.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
51.
Sneddon
,
I. N.
,
1948
, “
Boussinesq's Problem for a Rigid Cone
,”
Math. Proc. Camb. Philos. Soc.
,
44
(
4
), pp.
492
507
.
52.
Sneddon
,
I. N.
,
1946
, “
Boussinesq's Problem for a Flat-Ended Cylinder
,”
Math. Proc. Camb. Philos. Soc.
,
42
(
1
), pp.
29
39
.
You do not currently have access to this content.