Hydraulic fracturing (fracking) technology in gas or oil shale engineering is highly developed last decades, but the knowledge of the actual fracking process is mostly empirical and makes mechanicians and petroleum engineers wonder: why fracking works? (Bažant et al., 2014, “Why Fracking Works,” ASME J. Appl. Mech., 81(10), p. 101010) Two crucial issues should be considered in order to answer this question, which are fracture propagation condition and multiscale fracture network formation in shale. Multiple clusters of fractures initiate from the horizontal wellbore and several major fractures propagate simultaneously during one fracking stage. The simulation-based unitary fracking condition is proposed in this paper by extended finite element method (XFEM) to drive fracture clusters growing or arresting dominated by inlet fluid flux and stress intensity factors. However, there are millions of smeared fractures in the formation, which compose a multiscale fracture network beyond the computation capacity by XFEM. So, another simulation-based multiscale self-consistent fracture network model is proposed bridging the multiscale smeared fractures. The purpose of this work is to predict pressure on mouth of well or fluid flux in the wellbore based on the required minimum fracture spacing scale, reservoir pressure, and proppant size, as well as other given conditions. Examples are provided to verify the theoretic and numerical models.

References

References
1.
Bažant
,
Z. P.
,
Salviato
,
M.
,
Chau
,
V. T.
,
Visnawathan
,
H.
, and
Zubelewicz
,
A.
,
2014
, “
Why Fracking Works
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101010
.
2.
Lecampion
,
B.
, and
Desroches
,
J.
,
2015
, “
Simultaneous Initiation and Growth of Multiple Radial Hydraulic Fractures From a Horizontal Wellbore
,”
J. Mech. Phys. Solids
,
82
, pp.
235
258
.
3.
Miller
,
C. K.
,
Waters
,
G. A.
, and
Rylander
,
E. I.
,
2011
, “Evaluation of Production Log Data From Horizontal Wells Drilled in Organic Shales,” North American Unconventional Gas Conference and Exhibition, Society of Petroleum Engineers, The Woodlands, Texas, Paper No.
SPE-144326-MS
.
4.
Xu
,
D. D.
,
Liu
,
Z. L.
,
Liu
,
X. M.
,
Zeng
,
Q. L.
, and
Zhuang
,
Z.
,
2014
, “
Modeling of Dynamic Crack Branching by Enhanced Extended Finite Element Method
,”
Comput. Mech.
,
54
(
2
), pp.
489
502
.
5.
Chau
,
V. T.
,
Bažant
,
Z. P.
, and
Su
,
Y.
,
2016
, “
Growth Model for Large Branched Three-Dimensional Hydraulic Crack System in Gas or Oil Shale
,”
Philos. Trans. R. Soc. A
,
374
(
2078
), p. 20150418.
6.
Geertsma
,
J.
, and
De Klerk
,
F.
,
1969
, “
A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures
,”
J. Pet. Technol.
,
21
(
12
), pp.
1571
1581
.
7.
Khristianovic
,
S. A.
, and
Zheltov
,
Y. P.
,
1955
, “
Formation of Vertical Fractures by Means of Highly Viscous Liquid
,”
4th World Petroleum Congress
, Rome, Italy, June 6–15, Paper No. WPC-6132.
8.
Nordgren
,
R. P.
,
1972
, “
Propagation of a Vertical Hydraulic Fracture
,”
Soc. Pet. Eng. J.
,
12
(
4
), pp.
306
314
.
9.
Perkins
,
T. K.
, and
Kern
,
L. R.
,
1961
, “
Widths of Hydraulic Fractures
,”
J. Pet. Technol.
,
13
(
9
), pp.
937
949
.
10.
Adachi
,
J.
,
2001
, “
Fluid-Driven Fracture in Permeable Rock
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
11.
Detournay
,
E.
,
2004
, “
Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks
,”
Int. J. Geomech.
,
4
(
1
), pp.
35
45
.
12.
Garagash
,
D. I.
,
2006
, “
Propagation of a Plane-Strain Hydraulic Fracture With a Fluid Lag: Early-Time Solution
,”
Int. J. Solids Struct.
,
43
(
18–19
), pp.
5811
5835
.
13.
Savitski
,
A. A.
, and
Detournay
,
E.
,
2002
, “
Propagation of a Penny-Shaped Fluid-Driven Fracture in an Impermeable Rock: Asymptotic Solutions
,”
Int. J. Solids Struct.
,
39
(
26
), pp.
6311
6337
.
14.
Olson
,
J. E.
, and
Taleghani
,
A. D.
,
2009
, “
Modeling Simultaneous Growth of Multiple Hydraulic Fractures and Their Interaction With Natural Fractures
,”
SPE Hydraulic Fracturing Technology Conference
, Society of Petroleum Engineers, The Woodlands, TX, Paper No.
SPE-119739-MS
.
15.
Taleghani
,
A. D.
,
2011
, “
Modeling Simultaneous Growth of Multi-Branch Hydraulic Fractures
,”
45th U.S. Rock Mechanics/Geomechanics Symposium
, American Rock Mechanics Association, San Francisco, CA, June 26–29, Paper No. ARMA-11-436.
16.
Bunger
,
A. P.
,
2013
, “
Analysis of the Power Input Needed to Propagate Multiple Hydraulic Fractures
,”
Int. J. Solids Struct.
,
50
(
10
), pp.
1538
1549
.
17.
Bunger
,
A. P.
,
Jeffrey
,
R. G.
, and
Zhang
,
X.
,
2014
, “
Constraints on Simultaneous Growth of Hydraulic Fractures From Multiple Perforation Clusters in Horizontal Wells
,”
SPE J.
,
19
(
4
), pp.
608
620
.
18.
Wu
,
K.
, and
Olson
,
J. E.
,
2015
, “
Simultaneous Multifracture Treatments: Fully Coupled Fluid Flow and Fracture Mechanics for Horizontal Wells
,”
SPE J.
,
20
(
2
), pp.
337
346
.
19.
Wu
,
K.
, and
Olson
,
J. E.
,
2015
, “
Mechanisms of Simultaneous Hydraulic-Fracture Propagation From Multiple Perforation Clusters in Horizontal Wells
,”
SPE J.
,
21
(
3
), pp.
1
9
.
20.
Zeng
,
Q.
,
Liu
,
Z.
,
Wang
,
T.
,
Gao
,
Y.
, and
Zhuang
,
Z.
,
2017
, “
Fully Coupled Simulation of the Propagation of Multiple Hydraulic Fractures From a Horizontal Wellbore
,”
Comput. Mech.
, (submitted).
21.
Zhuang
,
Z.
,
Liu
,
Z.
,
Cheng
,
B.
, and
Liao
,
J.
,
2014
,
Extended Finite Element Method
,
Elsevier & Tsinghua University Press
,
Oxford, UK
.
22.
Fox
,
R. W.
,
McDonald
,
A. T.
, and
Pritchard
,
P. J.
,
2010
,
Introduction to Fluid Mechanics
,
Wiley
,
New York
.
23.
Crump
,
J. B.
, and
Conway
,
M. W.
,
1988
, “
Effects of Perforation-Entry Friction on Bottomhole Treating Analysis
,”
J. Pet. Technol.
,
40
(
8
), pp.
1041
1048
.
24.
Wang
,
H.
,
Liu
,
Z.
,
Xu
,
D.
,
Zeng
,
Q.
, and
Zhuang
,
Z.
,
2016
, “
Extended Finite Element Method Analysis for Shielding and Amplification Effect of a Main Crack Interacted With a Group of Nearby Parallel Microcracks
,”
Int. J. Damage Mech.
,
25
(
1
), pp.
4
25
.
25.
Bažant
,
Z. P.
,
Ohtsubo
,
H.
, and
Aoh
,
K.
,
1979
, “
Stability and Post-Critical Growth of a System of Cooling or Shrinkage Cracks
,”
Int. J. Fract.
,
15
(
5
), pp.
443
456
.
26.
Bažant
,
Z. P.
, and
Tabbara
,
M. R.
,
1992
, “
Bifurcation and Stability of Structures With Interacting Propagating Cracks
,”
Int. J. Fract.
,
53
(
3
), pp.
273
289
.
27.
Nemat-Nasser
,
S.
,
Keer
,
L. M.
, and
Parihar
,
K. S.
,
1978
, “
Unstable Growth of Thermally Induced Interacting Cracks in Brittle Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
409
430
.
28.
Nemat-Nasser
,
S.
,
Sumi
,
Y.
, and
Keer
,
L. M.
,
1980
, “
Unstable Growth of Tension Cracks in Brittle Solids: Stable and Unstable Bifurcations, Snap-Through, and Imperfection Sensitivity
,”
Int. J. Solids Struct.
,
16
(
11
), pp.
1017
1035
.
You do not currently have access to this content.