Two types of tubular dielectric elastomers (DE) torsional actuators are studied in this work, which are, respectively, reinforced by a family and two families of helical inextensible fibers. When subject to a radial electric field, torsional deformation will be induced in the DE actuators due to the constraint of inextensible fibers. By conducting finite deformation analysis with the principal axis approach and adopting appropriate constitutive equations, simple analytical solutions are obtained for the considered DE actuators. Furthermore, the effects of material parameters and the fiber angles as well as externally applied axial force and twist moment on the voltage-induced torsional behaviors of the two DE actuators are discussed in order to explore their maximum torsional actuation capability. The concept design presented here provides an effective approach for achieving large torsional deformation, and the developed model and revealed results will aid the design and fabrication of soft actuators and soft robots.

References

References
1.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
2.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
3.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
4.
O'Brien
,
B. M.
,
McKay
,
T. G.
,
Gisby
,
T. A.
, and
Anderson
,
I. A.
,
2012
, “
Rotating Turkeys and Self-Commutating Artificial Muscle Motors
,”
Appl. Phys. Lett.
,
100
(
7
), p.
074108
.
5.
Pei
,
Q.
,
Pelrine
,
R.
,
Stanford
,
S.
,
Kornbluh
,
R.
, and
Rosenthal
,
M.
,
2003
, “
Electroelastomer Rolls and Their Application for Biomimetic Walking Robots
,”
Synth. Met.
,
135–136
, pp.
129
131
.
6.
Kovacs
,
G.
,
Düring
,
L.
,
Michel
,
S.
, and
Terrasi
,
G.
,
2009
, “
Stacked Dielectric Elastomer Actuator for Tensile Force Transmission
,”
Sens. Actuators A
,
155
(
2
), pp.
299
307
.
7.
Kovacs
,
G.
,
Lochmatter
,
P.
, and
Wissler
,
M.
,
2007
, “
An Arm Wrestling Robot Driven by Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
16
(
2
), pp.
S306
S317
.
8.
Carpi
,
F.
,
Frediani
,
G.
,
Turco
,
S.
, and
De Rossi
,
D.
,
2011
, “
Bioinspired Tunable Lens With Muscle Like Electroactive Elastomers
,”
Adv. Funct. Mater.
,
21
(
21
), pp.
4152
4158
.
9.
Shian
,
S.
,
Diebold
,
R. M.
, and
Clarke
,
D. R.
,
2013
, “
Tunable Lenses Using Transparent Dielectric Elastomer Actuators
,”
Opt. Express
,
21
(
7
), pp.
8669
8676
.
10.
Akbari
,
S.
, and
Shea
,
H.
,
2012
, “
Microfabrication and Characterization of an Array of Dielectric Elastomer Actuators Generating Uniaxial Strain to Stretch Individual Cells
,”
J. Micromech. Microeng.
,
22
(
4
), p.
045020
.
11.
Huang
,
J.
,
Li
,
T.
,
Foo
,
C. C.
,
Zhu
,
J.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Giant, Voltage-Actuated Deformation of a Dielectric Elastomer Under Dead Load
,”
Appl. Phys. Lett.
,
100
(
4
), p.
041911
.
12.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
13.
Lu
,
T.
,
Huang
,
J.
,
Jordi
,
C.
,
Kovacs
,
G.
,
Huang
,
R.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Dielectric Elastomer Actuators Under Equal-Biaxial Forces, Uniaxial Forces, and Uniaxial Constraint of Stiff Fibers
,”
Soft Matter
,
8
(
22
), pp.
6167
6173
.
14.
Huang
,
J.
,
Lu
,
T.
,
Zhu
,
J.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Large, Uni-Directional Actuation in Dielectric Elastomers Achieved by Fiber Stiffening
,”
Appl. Phys. Lett.
,
100
(
21
), p.
211901
.
15.
Lu
,
T.
,
Shi
,
Z.
,
Shi
,
Q.
, and
Wang
,
T.
,
2016
, “
Bioinspired Bicipital Muscle With Fiber-Constrained Dielectric Elastomer Actuator
,”
Extreme Mech. Lett.
,
6
, pp.
75
81
.
16.
Shian
,
S.
,
Bertoldi
,
K.
, and
Clarke
,
D. R.
, “
Use of Aligned Fibers to Enhance the Performance of Dielectric Elastomer Inchworm Robots
,”
Proc. SPIE
,
9430
, pp.
94301
94309
.
17.
Shian
,
S.
,
Bertoldi
,
K.
, and
Clarke
,
D. R.
,
2015
, “
Dielectric Elastomer Based “Grippers” for Soft Robotics
,”
Adv. Mater.
,
27
(
43
), pp.
6814
6819
.
18.
Lee
,
K.
, and
Tawfick
,
S.
,
2016
, “
Fiber Micro-Architected Electro–Elasto-Kinematic Muscles
,”
Extreme Mech. Lett.
,
8
, pp.
64
69
19.
Goulbourne
,
N.
,
Son
,
S.
, and
Fox
,
J.
, 2007, “
Self-Sensing McKibben Actuators Using Dielectric Elastomer Sensors
,”
Proc. SPIE
,
6524
, p.
652414
.
20.
Son
,
S.
, and
Goulbourne
,
N.
,
2009
, “
Finite Deformations of Tubular Dielectric Elastomer Sensors
,”
J. Intell. Mater. Syst. Struct.
,
20
(
18
), pp.
2187
2199
.
21.
He
,
L.
,
Lou
,
J.
,
Du
,
J.
, and
Wu
,
H.
,
2017
, “
Voltage-Induced Torsion of a Fiber-Reinforced Tubular Dielectric Elastomer Actuator
,”
Compos. Sci. Technol.
,
140
, pp.
106
115
.
22.
Lu
,
T.
,
An
,
L.
,
Li
,
J.
,
Yuan
,
C.
, and
Wang
,
T.
,
2015
, “
Electro-Mechanical Coupling Bifurcation and Bulging Propagation in a Cylindrical Dielectric Elastomer Tube
,”
J. Mech. Phys. Solids
,
85
, pp.
160
175
.
You do not currently have access to this content.